Julia Lisoń-Kubica, Anna Taratuta, Karolina Goldsztajn, Magdalena Antonowicz, Witold Walke, Aneta Dyner, Marcin Basiaga
{"title":"新一代钛合金表面改性的现代方法。","authors":"Julia Lisoń-Kubica, Anna Taratuta, Karolina Goldsztajn, Magdalena Antonowicz, Witold Walke, Aneta Dyner, Marcin Basiaga","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>The constantly growing need for the use of implants in osteotomy is mainly due to the aging population and the need for long-term use of this type of biomaterials. Improving implant materials requires the selection of appropriate functional properties. Currently used titanium (Ti) alloys, such as Ti6Al4V and Ti6Al7Nb, are being replaced by materials with better biocompatibility, such as vanadium (V) or niobium (Nb), allowing for creation of the so-called new generation alloys. These new alloys, with the incorporation of zirconium (Zr), iron, and tantalum, possess Young's modulus close to that of a bone, which further improves the improves the biomaterial's. biocompatibility. This article describes the atomic layer deposition (ALD) method and its possible applications in the new generation of titanium alloys for biomedical applications. Also, the exemplary results of tin oxide (SnO2) thin coatings deposited by ALD and physical vapor deposition (PVD) methods are presented. This study aimed to evaluate the physicochemical properties of a Ti13Nb13Zr alloy used for elements in the skeletal system. As the temperature and the number of cycles vary, the results demonstrate that the surface area of the samples changes. The uncoated Ti13Nb13Zr alloy exhibits hydrophilic properties. However, all coated specimens improve in this respect and provide improved clinical results. after the applied modification, the samples have a smaller contact angle, but still remain in the range of 0-90°, which makes it possible to conclude that their nature remains hydrophilic. Coating the specimens decreased the mineralization risk of postoperative complications. As a result, the biomaterials demonstrated improved effectiveness, decreased complication indicators, and improved patient well-being.</p>","PeriodicalId":6897,"journal":{"name":"Acta of bioengineering and biomechanics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modern methods of surface modification for new-generation titanium alloys.\",\"authors\":\"Julia Lisoń-Kubica, Anna Taratuta, Karolina Goldsztajn, Magdalena Antonowicz, Witold Walke, Aneta Dyner, Marcin Basiaga\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The constantly growing need for the use of implants in osteotomy is mainly due to the aging population and the need for long-term use of this type of biomaterials. Improving implant materials requires the selection of appropriate functional properties. Currently used titanium (Ti) alloys, such as Ti6Al4V and Ti6Al7Nb, are being replaced by materials with better biocompatibility, such as vanadium (V) or niobium (Nb), allowing for creation of the so-called new generation alloys. These new alloys, with the incorporation of zirconium (Zr), iron, and tantalum, possess Young's modulus close to that of a bone, which further improves the improves the biomaterial's. biocompatibility. This article describes the atomic layer deposition (ALD) method and its possible applications in the new generation of titanium alloys for biomedical applications. Also, the exemplary results of tin oxide (SnO2) thin coatings deposited by ALD and physical vapor deposition (PVD) methods are presented. This study aimed to evaluate the physicochemical properties of a Ti13Nb13Zr alloy used for elements in the skeletal system. As the temperature and the number of cycles vary, the results demonstrate that the surface area of the samples changes. The uncoated Ti13Nb13Zr alloy exhibits hydrophilic properties. However, all coated specimens improve in this respect and provide improved clinical results. after the applied modification, the samples have a smaller contact angle, but still remain in the range of 0-90°, which makes it possible to conclude that their nature remains hydrophilic. Coating the specimens decreased the mineralization risk of postoperative complications. As a result, the biomaterials demonstrated improved effectiveness, decreased complication indicators, and improved patient well-being.</p>\",\"PeriodicalId\":6897,\"journal\":{\"name\":\"Acta of bioengineering and biomechanics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta of bioengineering and biomechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta of bioengineering and biomechanics","FirstCategoryId":"5","ListUrlMain":"","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOPHYSICS","Score":null,"Total":0}
Modern methods of surface modification for new-generation titanium alloys.
The constantly growing need for the use of implants in osteotomy is mainly due to the aging population and the need for long-term use of this type of biomaterials. Improving implant materials requires the selection of appropriate functional properties. Currently used titanium (Ti) alloys, such as Ti6Al4V and Ti6Al7Nb, are being replaced by materials with better biocompatibility, such as vanadium (V) or niobium (Nb), allowing for creation of the so-called new generation alloys. These new alloys, with the incorporation of zirconium (Zr), iron, and tantalum, possess Young's modulus close to that of a bone, which further improves the improves the biomaterial's. biocompatibility. This article describes the atomic layer deposition (ALD) method and its possible applications in the new generation of titanium alloys for biomedical applications. Also, the exemplary results of tin oxide (SnO2) thin coatings deposited by ALD and physical vapor deposition (PVD) methods are presented. This study aimed to evaluate the physicochemical properties of a Ti13Nb13Zr alloy used for elements in the skeletal system. As the temperature and the number of cycles vary, the results demonstrate that the surface area of the samples changes. The uncoated Ti13Nb13Zr alloy exhibits hydrophilic properties. However, all coated specimens improve in this respect and provide improved clinical results. after the applied modification, the samples have a smaller contact angle, but still remain in the range of 0-90°, which makes it possible to conclude that their nature remains hydrophilic. Coating the specimens decreased the mineralization risk of postoperative complications. As a result, the biomaterials demonstrated improved effectiveness, decreased complication indicators, and improved patient well-being.
期刊介绍:
Acta of Bioengineering and Biomechanics is a platform allowing presentation of investigations results, exchange of ideas and experiences among researchers with technical and medical background.
Papers published in Acta of Bioengineering and Biomechanics may cover a wide range of topics in biomechanics, including, but not limited to:
Tissue Biomechanics,
Orthopedic Biomechanics,
Biomaterials,
Sport Biomechanics.