Mayuri Inchanalkar, Sumana Srivatsa, Srikant Ambatipudi, Priyanka G Bhosale, Asawari Patil, Alejandro A Schäffer, Niko Beerenwinkel, Manoj B Mahimkar
{"title":"hpv阴性白斑和牙龈-口腔复合体癌的全基因组DNA甲基化分析。","authors":"Mayuri Inchanalkar, Sumana Srivatsa, Srikant Ambatipudi, Priyanka G Bhosale, Asawari Patil, Alejandro A Schäffer, Niko Beerenwinkel, Manoj B Mahimkar","doi":"10.1186/s13148-023-01510-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Gingivobuccal complex oral squamous cell carcinoma (GBC-OSCC) is an aggressive malignancy with high mortality often preceded by premalignant lesions, including leukoplakia. Previous studies have reported genomic drivers in OSCC, but much remains to be elucidated about DNA methylation patterns across different stages of oral carcinogenesis.</p><p><strong>Results: </strong>There is a serious lack of biomarkers and clinical application of biomarkers for early detection and prognosis of gingivobuccal complex cancers. Hence, in search of novel biomarkers, we measured genome-wide DNA methylation in 22 normal oral tissues, 22 leukoplakia, and 74 GBC-OSCC tissue samples. Both leukoplakia and GBC-OSCC had distinct methylation profiles as compared to normal oral tissue samples. Aberrant DNA methylation increases during the different stages of oral carcinogenesis, from premalignant lesions to carcinoma. We identified 846 and 5111 differentially methylated promoters in leukoplakia and GBC-OSCC, respectively, with a sizable fraction shared between the two sets. Further, we identified potential biomarkers from integrative analysis in gingivobuccal complex cancers and validated them in an independent cohort. Integration of genome, epigenome, and transcriptome data revealed candidate genes with gene expression synergistically regulated by copy number and DNA methylation changes. Regularised Cox regression identified 32 genes associated with patient survival. In an independent set of samples, we validated eight genes (FAT1, GLDC, HOXB13, CST7, CYB5A, MLLT11, GHR, LY75) from the integrative analysis and 30 genes from previously published reports. Bisulfite pyrosequencing validated GLDC (P = 0.036), HOXB13 (P < 0.0001) promoter hypermethylation, and FAT1 (P < 0.0001) hypomethylation in GBC-OSCC compared to normal controls.</p><p><strong>Conclusions: </strong>Our findings identified methylation signatures associated with leukoplakia and gingivobuccal complex cancers. The integrative analysis in GBC-OSCC identified putative biomarkers that enhance existing knowledge of oral carcinogenesis and may potentially help in risk stratification and prognosis of GBC-OSCC.</p>","PeriodicalId":48652,"journal":{"name":"Clinical Epigenetics","volume":null,"pages":null},"PeriodicalIF":5.7000,"publicationDate":"2023-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10225107/pdf/","citationCount":"2","resultStr":"{\"title\":\"Genome-wide DNA methylation profiling of HPV-negative leukoplakia and gingivobuccal complex cancers.\",\"authors\":\"Mayuri Inchanalkar, Sumana Srivatsa, Srikant Ambatipudi, Priyanka G Bhosale, Asawari Patil, Alejandro A Schäffer, Niko Beerenwinkel, Manoj B Mahimkar\",\"doi\":\"10.1186/s13148-023-01510-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Gingivobuccal complex oral squamous cell carcinoma (GBC-OSCC) is an aggressive malignancy with high mortality often preceded by premalignant lesions, including leukoplakia. Previous studies have reported genomic drivers in OSCC, but much remains to be elucidated about DNA methylation patterns across different stages of oral carcinogenesis.</p><p><strong>Results: </strong>There is a serious lack of biomarkers and clinical application of biomarkers for early detection and prognosis of gingivobuccal complex cancers. Hence, in search of novel biomarkers, we measured genome-wide DNA methylation in 22 normal oral tissues, 22 leukoplakia, and 74 GBC-OSCC tissue samples. Both leukoplakia and GBC-OSCC had distinct methylation profiles as compared to normal oral tissue samples. Aberrant DNA methylation increases during the different stages of oral carcinogenesis, from premalignant lesions to carcinoma. We identified 846 and 5111 differentially methylated promoters in leukoplakia and GBC-OSCC, respectively, with a sizable fraction shared between the two sets. Further, we identified potential biomarkers from integrative analysis in gingivobuccal complex cancers and validated them in an independent cohort. Integration of genome, epigenome, and transcriptome data revealed candidate genes with gene expression synergistically regulated by copy number and DNA methylation changes. Regularised Cox regression identified 32 genes associated with patient survival. In an independent set of samples, we validated eight genes (FAT1, GLDC, HOXB13, CST7, CYB5A, MLLT11, GHR, LY75) from the integrative analysis and 30 genes from previously published reports. Bisulfite pyrosequencing validated GLDC (P = 0.036), HOXB13 (P < 0.0001) promoter hypermethylation, and FAT1 (P < 0.0001) hypomethylation in GBC-OSCC compared to normal controls.</p><p><strong>Conclusions: </strong>Our findings identified methylation signatures associated with leukoplakia and gingivobuccal complex cancers. The integrative analysis in GBC-OSCC identified putative biomarkers that enhance existing knowledge of oral carcinogenesis and may potentially help in risk stratification and prognosis of GBC-OSCC.</p>\",\"PeriodicalId\":48652,\"journal\":{\"name\":\"Clinical Epigenetics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2023-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10225107/pdf/\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical Epigenetics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s13148-023-01510-z\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Epigenetics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13148-023-01510-z","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
Genome-wide DNA methylation profiling of HPV-negative leukoplakia and gingivobuccal complex cancers.
Background: Gingivobuccal complex oral squamous cell carcinoma (GBC-OSCC) is an aggressive malignancy with high mortality often preceded by premalignant lesions, including leukoplakia. Previous studies have reported genomic drivers in OSCC, but much remains to be elucidated about DNA methylation patterns across different stages of oral carcinogenesis.
Results: There is a serious lack of biomarkers and clinical application of biomarkers for early detection and prognosis of gingivobuccal complex cancers. Hence, in search of novel biomarkers, we measured genome-wide DNA methylation in 22 normal oral tissues, 22 leukoplakia, and 74 GBC-OSCC tissue samples. Both leukoplakia and GBC-OSCC had distinct methylation profiles as compared to normal oral tissue samples. Aberrant DNA methylation increases during the different stages of oral carcinogenesis, from premalignant lesions to carcinoma. We identified 846 and 5111 differentially methylated promoters in leukoplakia and GBC-OSCC, respectively, with a sizable fraction shared between the two sets. Further, we identified potential biomarkers from integrative analysis in gingivobuccal complex cancers and validated them in an independent cohort. Integration of genome, epigenome, and transcriptome data revealed candidate genes with gene expression synergistically regulated by copy number and DNA methylation changes. Regularised Cox regression identified 32 genes associated with patient survival. In an independent set of samples, we validated eight genes (FAT1, GLDC, HOXB13, CST7, CYB5A, MLLT11, GHR, LY75) from the integrative analysis and 30 genes from previously published reports. Bisulfite pyrosequencing validated GLDC (P = 0.036), HOXB13 (P < 0.0001) promoter hypermethylation, and FAT1 (P < 0.0001) hypomethylation in GBC-OSCC compared to normal controls.
Conclusions: Our findings identified methylation signatures associated with leukoplakia and gingivobuccal complex cancers. The integrative analysis in GBC-OSCC identified putative biomarkers that enhance existing knowledge of oral carcinogenesis and may potentially help in risk stratification and prognosis of GBC-OSCC.
Clinical EpigeneticsBiochemistry, Genetics and Molecular Biology-Developmental Biology
CiteScore
8.90
自引率
5.30%
发文量
150
审稿时长
12 weeks
期刊介绍:
Clinical Epigenetics, the official journal of the Clinical Epigenetics Society, is an open access, peer-reviewed journal that encompasses all aspects of epigenetic principles and mechanisms in relation to human disease, diagnosis and therapy. Clinical trials and research in disease model organisms are particularly welcome.