在资源有限的情况下,通过机器学习实现最佳测试准入。

IF 2.3 3区 医学 Q2 HEALTH POLICY & SERVICES
Health Care Management Science Pub Date : 2023-06-01 Epub Date: 2023-01-12 DOI:10.1007/s10729-022-09624-1
Ramy Elitzur, Dmitry Krass, Eyal Zimlichman
{"title":"在资源有限的情况下,通过机器学习实现最佳测试准入。","authors":"Ramy Elitzur, Dmitry Krass, Eyal Zimlichman","doi":"10.1007/s10729-022-09624-1","DOIUrl":null,"url":null,"abstract":"<p><p>Developing rapid tools for early detection of viral infection is crucial for pandemic containment. This is particularly crucial when testing resources are constrained and/or there are significant delays until the test results are available - as was quite common in the early days of Covid-19 pandemic. We show how predictive analytics methods using machine learning algorithms can be combined with optimal pre-test screening mechanisms, greatly increasing test efficiency (i.e., rate of true positives identified per test), as well as to allow doctors to initiate treatment before the test results are available. Our optimal test admission policies account for imperfect accuracy of both the medical test and the model prediction mechanism. We derive the accuracy required for the optimized admission policies to be effective. We also show how our policies can be extended to re-testing high-risk patients, as well as combined with pool testing approaches. We illustrate our techniques by applying them to a large data reported by the Israeli Ministry of Health for RT-PCR tests from March to September 2020. Our results demonstrate that in the context of the Covid-19 pandemic a pre-test probability screening tool with conventional RT-PCR testing could have potentially increased efficiency by several times, compared to random admission control.</p>","PeriodicalId":12903,"journal":{"name":"Health Care Management Science","volume":"26 2","pages":"279-300"},"PeriodicalIF":2.3000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9838546/pdf/","citationCount":"0","resultStr":"{\"title\":\"Machine learning for optimal test admission in the presence of resource constraints.\",\"authors\":\"Ramy Elitzur, Dmitry Krass, Eyal Zimlichman\",\"doi\":\"10.1007/s10729-022-09624-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Developing rapid tools for early detection of viral infection is crucial for pandemic containment. This is particularly crucial when testing resources are constrained and/or there are significant delays until the test results are available - as was quite common in the early days of Covid-19 pandemic. We show how predictive analytics methods using machine learning algorithms can be combined with optimal pre-test screening mechanisms, greatly increasing test efficiency (i.e., rate of true positives identified per test), as well as to allow doctors to initiate treatment before the test results are available. Our optimal test admission policies account for imperfect accuracy of both the medical test and the model prediction mechanism. We derive the accuracy required for the optimized admission policies to be effective. We also show how our policies can be extended to re-testing high-risk patients, as well as combined with pool testing approaches. We illustrate our techniques by applying them to a large data reported by the Israeli Ministry of Health for RT-PCR tests from March to September 2020. Our results demonstrate that in the context of the Covid-19 pandemic a pre-test probability screening tool with conventional RT-PCR testing could have potentially increased efficiency by several times, compared to random admission control.</p>\",\"PeriodicalId\":12903,\"journal\":{\"name\":\"Health Care Management Science\",\"volume\":\"26 2\",\"pages\":\"279-300\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9838546/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Health Care Management Science\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10729-022-09624-1\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/1/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"HEALTH POLICY & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Health Care Management Science","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10729-022-09624-1","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/12 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"HEALTH POLICY & SERVICES","Score":null,"Total":0}
引用次数: 0

摘要

开发早期检测病毒感染的快速工具对于遏制大流行至关重要。在检测资源有限和/或在检测结果出来之前存在严重延迟的情况下,这一点尤为重要--在科威德-19 大流行的早期就很常见。我们展示了如何将使用机器学习算法的预测分析方法与最佳检测前筛查机制相结合,从而大大提高检测效率(即每次检测确定的真阳性率),并让医生在检测结果出来之前就开始治疗。我们的最佳检验准入政策考虑到了医学检验和模型预测机制的不完美准确性。我们得出了优化后的入院政策有效所需的准确度。我们还展示了如何将我们的政策扩展到对高风险患者的再测试,以及如何与集合测试方法相结合。我们将这些技术应用于以色列卫生部报告的 2020 年 3 月至 9 月 RT-PCR 检测的大量数据,以此说明我们的技术。我们的结果表明,在 Covid-19 大流行的背景下,与随机入院控制相比,采用常规 RT-PCR 检测的检测前概率筛查工具有可能将效率提高数倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Machine learning for optimal test admission in the presence of resource constraints.

Machine learning for optimal test admission in the presence of resource constraints.

Machine learning for optimal test admission in the presence of resource constraints.

Machine learning for optimal test admission in the presence of resource constraints.

Developing rapid tools for early detection of viral infection is crucial for pandemic containment. This is particularly crucial when testing resources are constrained and/or there are significant delays until the test results are available - as was quite common in the early days of Covid-19 pandemic. We show how predictive analytics methods using machine learning algorithms can be combined with optimal pre-test screening mechanisms, greatly increasing test efficiency (i.e., rate of true positives identified per test), as well as to allow doctors to initiate treatment before the test results are available. Our optimal test admission policies account for imperfect accuracy of both the medical test and the model prediction mechanism. We derive the accuracy required for the optimized admission policies to be effective. We also show how our policies can be extended to re-testing high-risk patients, as well as combined with pool testing approaches. We illustrate our techniques by applying them to a large data reported by the Israeli Ministry of Health for RT-PCR tests from March to September 2020. Our results demonstrate that in the context of the Covid-19 pandemic a pre-test probability screening tool with conventional RT-PCR testing could have potentially increased efficiency by several times, compared to random admission control.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Health Care Management Science
Health Care Management Science HEALTH POLICY & SERVICES-
CiteScore
7.20
自引率
5.60%
发文量
40
期刊介绍: Health Care Management Science publishes papers dealing with health care delivery, health care management, and health care policy. Papers should have a decision focus and make use of quantitative methods including management science, operations research, analytics, machine learning, and other emerging areas. Articles must clearly articulate the relevance and the realized or potential impact of the work. Applied research will be considered and is of particular interest if there is evidence that it was implemented or informed a decision-making process. Papers describing routine applications of known methods are discouraged. Authors are encouraged to disclose all data and analyses thereof, and to provide computational code when appropriate. Editorial statements for the individual departments are provided below. Health Care Analytics Departmental Editors: Margrét Bjarnadóttir, University of Maryland Nan Kong, Purdue University With the explosion in computing power and available data, we have seen fast changes in the analytics applied in the healthcare space. The Health Care Analytics department welcomes papers applying a broad range of analytical approaches, including those rooted in machine learning, survival analysis, and complex event analysis, that allow healthcare professionals to find opportunities for improvement in health system management, patient engagement, spending, and diagnosis. We especially encourage papers that combine predictive and prescriptive analytics to improve decision making and health care outcomes. The contribution of papers can be across multiple dimensions including new methodology, novel modeling techniques and health care through real-world cohort studies. Papers that are methodologically focused need in addition to show practical relevance. Similarly papers that are application focused should clearly demonstrate improvements over the status quo and available approaches by applying rigorous analytics. Health Care Operations Management Departmental Editors: Nilay Tanik Argon, University of North Carolina at Chapel Hill Bob Batt, University of Wisconsin The department invites high-quality papers on the design, control, and analysis of operations at healthcare systems. We seek papers on classical operations management issues (such as scheduling, routing, queuing, transportation, patient flow, and quality) as well as non-traditional problems driven by everchanging healthcare practice. Empirical, experimental, and analytical (model based) methodologies are all welcome. Papers may draw theory from across disciplines, and should provide insight into improving operations from the perspective of patients, service providers, organizations (municipal/government/industry), and/or society. Health Care Management Science Practice Departmental Editor: Vikram Tiwari, Vanderbilt University Medical Center The department seeks research from academicians and practitioners that highlights Management Science based solutions directly relevant to the practice of healthcare. Relevance is judged by the impact on practice, as well as the degree to which researchers engaged with practitioners in understanding the problem context and in developing the solution. Validity, that is, the extent to which the results presented do or would apply in practice is a key evaluation criterion. In addition to meeting the journal’s standards of originality and substantial contribution to knowledge creation, research that can be replicated in other organizations is encouraged. Papers describing unsuccessful applied research projects may be considered if there are generalizable learning points addressing why the project was unsuccessful. Health Care Productivity Analysis Departmental Editor: Jonas Schreyögg, University of Hamburg The department invites papers with rigorous methods and significant impact for policy and practice. Papers typically apply theory and techniques to measuring productivity in health care organizations and systems. The journal welcomes state-of-the-art parametric as well as non-parametric techniques such as data envelopment analysis, stochastic frontier analysis or partial frontier analysis. The contribution of papers can be manifold including new methodology, novel combination of existing methods or application of existing methods to new contexts. Empirical papers should produce results generalizable beyond a selected set of health care organizations. All papers should include a section on implications for management or policy to enhance productivity. Public Health Policy and Medical Decision Making Departmental Editors: Ebru Bish, University of Alabama Julie L. Higle, University of Southern California The department invites high quality papers that use data-driven methods to address important problems that arise in public health policy and medical decision-making domains. We welcome submissions that develop and apply mathematical and computational models in support of data-driven and model-based analyses for these problems. The Public Health Policy and Medical Decision-Making Department is particularly interested in papers that: Study high-impact problems involving health policy, treatment planning and design, and clinical applications; Develop original data-driven models, including those that integrate disease modeling with screening and/or treatment guidelines; Use model-based analyses as decision making-tools to identify optimal solutions, insights, recommendations. Articles must clearly articulate the relevance of the work to decision and/or policy makers and the potential impact on patients and/or society. Papers will include articulated contributions within the methodological domain, which may include modeling, analytical, or computational methodologies. Emerging Topics Departmental Editor: Alec Morton, University of Strathclyde Emerging Topics will handle papers which use innovative quantitative methods to shed light on frontier issues in healthcare management and policy. Such papers may deal with analytic challenges arising from novel health technologies or new organizational forms. Papers falling under this department may also deal with the analysis of new forms of data which are increasingly captured as health systems become more and more digitized.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信