{"title":"罗硝唑是一种优于甲硝唑的前药,用于硝基还原酶介导的斑马鱼幼崽肝细胞消融。","authors":"Yuhang Chen, Peipei Li, Ting Chen, Hanjie Liu, Peijian Wang, Xiaozhen Dai, Qingliang Zou","doi":"10.1089/zeb.2022.0066","DOIUrl":null,"url":null,"abstract":"<p><p>The liver plays a very important role in physiological processes of the human body. Liver regeneration has developed into an important area of study in liver disease. The Mtz (metronidazole)/NTR (nitroreductase)-mediated cell ablation system has been widely used to study the processes and mechanisms of liver injury and regeneration. However, high concentrations and toxic side effects of Mtz severely limit the application of the Mtz/NTR system. Therefore, screening new analogs to replace Mtz has become an important means to optimize the NTR ablation system. In this study, we screened five Mtz analogs including furazolidone, ronidazole, ornidazole, nitromide, and tinidazole. We compared their toxicity on the transgenic fish line <i>Tg(fabp10a: mCherry-NTR)</i> and their specific ablation ability on liver cells. The results showed that Ronidazole at a lower concentration (2 mM) had the same ability to ablate liver cells comparable with that of Mtz (10 mM), almost without toxic side effects on juvenile fish. Further study found that zebrafish hepatocyte injury caused by the Ronidazole/NTR system achieved the same liver regenerative effect as the Mtz/NTR system. The above results show that Ronidazole can replace Mtz with NTR to achieve superior damage and ablation effects in zebrafish liver.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Ronidazole Is a Superior Prodrug to Metronidazole for Nitroreductase-Mediated Hepatocytes Ablation in Zebrafish Larvae.\",\"authors\":\"Yuhang Chen, Peipei Li, Ting Chen, Hanjie Liu, Peijian Wang, Xiaozhen Dai, Qingliang Zou\",\"doi\":\"10.1089/zeb.2022.0066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The liver plays a very important role in physiological processes of the human body. Liver regeneration has developed into an important area of study in liver disease. The Mtz (metronidazole)/NTR (nitroreductase)-mediated cell ablation system has been widely used to study the processes and mechanisms of liver injury and regeneration. However, high concentrations and toxic side effects of Mtz severely limit the application of the Mtz/NTR system. Therefore, screening new analogs to replace Mtz has become an important means to optimize the NTR ablation system. In this study, we screened five Mtz analogs including furazolidone, ronidazole, ornidazole, nitromide, and tinidazole. We compared their toxicity on the transgenic fish line <i>Tg(fabp10a: mCherry-NTR)</i> and their specific ablation ability on liver cells. The results showed that Ronidazole at a lower concentration (2 mM) had the same ability to ablate liver cells comparable with that of Mtz (10 mM), almost without toxic side effects on juvenile fish. Further study found that zebrafish hepatocyte injury caused by the Ronidazole/NTR system achieved the same liver regenerative effect as the Mtz/NTR system. The above results show that Ronidazole can replace Mtz with NTR to achieve superior damage and ablation effects in zebrafish liver.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1089/zeb.2022.0066\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/zeb.2022.0066","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Ronidazole Is a Superior Prodrug to Metronidazole for Nitroreductase-Mediated Hepatocytes Ablation in Zebrafish Larvae.
The liver plays a very important role in physiological processes of the human body. Liver regeneration has developed into an important area of study in liver disease. The Mtz (metronidazole)/NTR (nitroreductase)-mediated cell ablation system has been widely used to study the processes and mechanisms of liver injury and regeneration. However, high concentrations and toxic side effects of Mtz severely limit the application of the Mtz/NTR system. Therefore, screening new analogs to replace Mtz has become an important means to optimize the NTR ablation system. In this study, we screened five Mtz analogs including furazolidone, ronidazole, ornidazole, nitromide, and tinidazole. We compared their toxicity on the transgenic fish line Tg(fabp10a: mCherry-NTR) and their specific ablation ability on liver cells. The results showed that Ronidazole at a lower concentration (2 mM) had the same ability to ablate liver cells comparable with that of Mtz (10 mM), almost without toxic side effects on juvenile fish. Further study found that zebrafish hepatocyte injury caused by the Ronidazole/NTR system achieved the same liver regenerative effect as the Mtz/NTR system. The above results show that Ronidazole can replace Mtz with NTR to achieve superior damage and ablation effects in zebrafish liver.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.