罗硝唑是一种优于甲硝唑的前药,用于硝基还原酶介导的斑马鱼幼崽肝细胞消融。

IF 1.4 4区 生物学 Q4 DEVELOPMENTAL BIOLOGY
Zebrafish Pub Date : 2023-06-01 DOI:10.1089/zeb.2022.0066
Yuhang Chen, Peipei Li, Ting Chen, Hanjie Liu, Peijian Wang, Xiaozhen Dai, Qingliang Zou
{"title":"罗硝唑是一种优于甲硝唑的前药,用于硝基还原酶介导的斑马鱼幼崽肝细胞消融。","authors":"Yuhang Chen,&nbsp;Peipei Li,&nbsp;Ting Chen,&nbsp;Hanjie Liu,&nbsp;Peijian Wang,&nbsp;Xiaozhen Dai,&nbsp;Qingliang Zou","doi":"10.1089/zeb.2022.0066","DOIUrl":null,"url":null,"abstract":"<p><p>The liver plays a very important role in physiological processes of the human body. Liver regeneration has developed into an important area of study in liver disease. The Mtz (metronidazole)/NTR (nitroreductase)-mediated cell ablation system has been widely used to study the processes and mechanisms of liver injury and regeneration. However, high concentrations and toxic side effects of Mtz severely limit the application of the Mtz/NTR system. Therefore, screening new analogs to replace Mtz has become an important means to optimize the NTR ablation system. In this study, we screened five Mtz analogs including furazolidone, ronidazole, ornidazole, nitromide, and tinidazole. We compared their toxicity on the transgenic fish line <i>Tg(fabp10a: mCherry-NTR)</i> and their specific ablation ability on liver cells. The results showed that Ronidazole at a lower concentration (2 mM) had the same ability to ablate liver cells comparable with that of Mtz (10 mM), almost without toxic side effects on juvenile fish. Further study found that zebrafish hepatocyte injury caused by the Ronidazole/NTR system achieved the same liver regenerative effect as the Mtz/NTR system. The above results show that Ronidazole can replace Mtz with NTR to achieve superior damage and ablation effects in zebrafish liver.</p>","PeriodicalId":23872,"journal":{"name":"Zebrafish","volume":"20 3","pages":"95-102"},"PeriodicalIF":1.4000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Ronidazole Is a Superior Prodrug to Metronidazole for Nitroreductase-Mediated Hepatocytes Ablation in Zebrafish Larvae.\",\"authors\":\"Yuhang Chen,&nbsp;Peipei Li,&nbsp;Ting Chen,&nbsp;Hanjie Liu,&nbsp;Peijian Wang,&nbsp;Xiaozhen Dai,&nbsp;Qingliang Zou\",\"doi\":\"10.1089/zeb.2022.0066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The liver plays a very important role in physiological processes of the human body. Liver regeneration has developed into an important area of study in liver disease. The Mtz (metronidazole)/NTR (nitroreductase)-mediated cell ablation system has been widely used to study the processes and mechanisms of liver injury and regeneration. However, high concentrations and toxic side effects of Mtz severely limit the application of the Mtz/NTR system. Therefore, screening new analogs to replace Mtz has become an important means to optimize the NTR ablation system. In this study, we screened five Mtz analogs including furazolidone, ronidazole, ornidazole, nitromide, and tinidazole. We compared their toxicity on the transgenic fish line <i>Tg(fabp10a: mCherry-NTR)</i> and their specific ablation ability on liver cells. The results showed that Ronidazole at a lower concentration (2 mM) had the same ability to ablate liver cells comparable with that of Mtz (10 mM), almost without toxic side effects on juvenile fish. Further study found that zebrafish hepatocyte injury caused by the Ronidazole/NTR system achieved the same liver regenerative effect as the Mtz/NTR system. The above results show that Ronidazole can replace Mtz with NTR to achieve superior damage and ablation effects in zebrafish liver.</p>\",\"PeriodicalId\":23872,\"journal\":{\"name\":\"Zebrafish\",\"volume\":\"20 3\",\"pages\":\"95-102\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Zebrafish\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1089/zeb.2022.0066\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"DEVELOPMENTAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zebrafish","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/zeb.2022.0066","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 1

摘要

肝脏在人体的生理过程中起着非常重要的作用。肝脏再生已成为肝脏疾病研究的一个重要领域。Mtz(甲硝唑)/NTR(硝基还原酶)介导的细胞消融系统已被广泛用于研究肝损伤和再生的过程和机制。然而,Mtz的高浓度和毒副作用严重限制了Mtz/NTR系统的应用。因此,筛选新的类似物替代Mtz已成为优化NTR烧蚀系统的重要手段。在这项研究中,我们筛选了五种Mtz类似物,包括呋喃唑酮、罗硝唑、奥硝唑、硝基胺和替硝唑。我们比较了它们对转基因鱼种Tg(fabp10a: mCherry-NTR)的毒性和对肝细胞的特异性消融能力。结果表明,较低浓度(2 mM)的Ronidazole对肝细胞的吞噬能力与Mtz (10 mM)相当,且对幼鱼几乎没有毒副作用。进一步研究发现,Ronidazole/NTR系统对斑马鱼肝细胞损伤的肝脏再生效果与Mtz/NTR系统相同。以上结果表明,Ronidazole用NTR替代Mtz对斑马鱼肝脏的损伤和消融效果较好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ronidazole Is a Superior Prodrug to Metronidazole for Nitroreductase-Mediated Hepatocytes Ablation in Zebrafish Larvae.

The liver plays a very important role in physiological processes of the human body. Liver regeneration has developed into an important area of study in liver disease. The Mtz (metronidazole)/NTR (nitroreductase)-mediated cell ablation system has been widely used to study the processes and mechanisms of liver injury and regeneration. However, high concentrations and toxic side effects of Mtz severely limit the application of the Mtz/NTR system. Therefore, screening new analogs to replace Mtz has become an important means to optimize the NTR ablation system. In this study, we screened five Mtz analogs including furazolidone, ronidazole, ornidazole, nitromide, and tinidazole. We compared their toxicity on the transgenic fish line Tg(fabp10a: mCherry-NTR) and their specific ablation ability on liver cells. The results showed that Ronidazole at a lower concentration (2 mM) had the same ability to ablate liver cells comparable with that of Mtz (10 mM), almost without toxic side effects on juvenile fish. Further study found that zebrafish hepatocyte injury caused by the Ronidazole/NTR system achieved the same liver regenerative effect as the Mtz/NTR system. The above results show that Ronidazole can replace Mtz with NTR to achieve superior damage and ablation effects in zebrafish liver.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Zebrafish
Zebrafish DEVELOPMENTAL BIOLOGY-ZOOLOGY
CiteScore
3.60
自引率
5.00%
发文量
29
审稿时长
3 months
期刊介绍: Zebrafish is the only peer-reviewed journal dedicated to the central role of zebrafish and other aquarium species as models for the study of vertebrate development, evolution, toxicology, and human disease. Due to its prolific reproduction and the external development of the transparent embryo, the zebrafish is a prime model for genetic and developmental studies. While genetically more distant from humans, the vertebrate zebrafish nevertheless has comparable organs and tissues, such as heart, kidney, pancreas, bones, and cartilage. Zebrafish introduced the new section TechnoFish, which highlights these innovations for the general zebrafish community. TechnoFish features two types of articles: TechnoFish Previews: Important, generally useful technical advances or valuable transgenic lines TechnoFish Methods: Brief descriptions of new methods, reagents, or transgenic lines that will be of widespread use in the zebrafish community Zebrafish coverage includes: Comparative genomics and evolution Molecular/cellular mechanisms of cell growth Genetic analysis of embryogenesis and disease Toxicological and infectious disease models Models for neurological disorders and aging New methods, tools, and experimental approaches Zebrafish also includes research with other aquarium species such as medaka, Fugu, and Xiphophorus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信