RoPE:一种用于差异基因表达分析的稳健谱似然方法

IF 1.7 4区 医学 Q3 GENETICS & HEREDITY
Lehang Zhong, Lisa J. Strug
{"title":"RoPE:一种用于差异基因表达分析的稳健谱似然方法","authors":"Lehang Zhong,&nbsp;Lisa J. Strug","doi":"10.1002/gepi.22526","DOIUrl":null,"url":null,"abstract":"<p>Variation in RNA-Seq data creates modeling challenges for differential gene expression (DE) analysis. Statistical approaches address conventional small sample sizes and implement empirical Bayes or non-parametric tests, but frequently produce different conclusions. Increasing sample sizes enable proposal of alternative DE paradigms. Here we develop RoPE, which uses a data-driven adjustment for variation and a robust profile likelihood ratio DE test. Simulation studies show RoPE can have improved performance over existing tools as sample size increases and has the most reliable control of error rates. Application of RoPE demonstrates that an active <i>Pseudomonas aeruginosa</i> infection downregulates the <i>SLC9A3</i> Cystic Fibrosis modifier gene.</p>","PeriodicalId":12710,"journal":{"name":"Genetic Epidemiology","volume":"47 5","pages":"379-393"},"PeriodicalIF":1.7000,"publicationDate":"2023-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/gepi.22526","citationCount":"0","resultStr":"{\"title\":\"RoPE: A robust profile likelihood method for differential gene expression analysis\",\"authors\":\"Lehang Zhong,&nbsp;Lisa J. Strug\",\"doi\":\"10.1002/gepi.22526\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Variation in RNA-Seq data creates modeling challenges for differential gene expression (DE) analysis. Statistical approaches address conventional small sample sizes and implement empirical Bayes or non-parametric tests, but frequently produce different conclusions. Increasing sample sizes enable proposal of alternative DE paradigms. Here we develop RoPE, which uses a data-driven adjustment for variation and a robust profile likelihood ratio DE test. Simulation studies show RoPE can have improved performance over existing tools as sample size increases and has the most reliable control of error rates. Application of RoPE demonstrates that an active <i>Pseudomonas aeruginosa</i> infection downregulates the <i>SLC9A3</i> Cystic Fibrosis modifier gene.</p>\",\"PeriodicalId\":12710,\"journal\":{\"name\":\"Genetic Epidemiology\",\"volume\":\"47 5\",\"pages\":\"379-393\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/gepi.22526\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genetic Epidemiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/gepi.22526\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetic Epidemiology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/gepi.22526","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

RNA-Seq数据的变化为差异基因表达(DE)分析带来了建模挑战。统计方法处理传统的小样本量和实施经验贝叶斯或非参数检验,但经常产生不同的结论。增加样本量可以提出可选择的DE范例。在这里,我们开发了RoPE,它使用数据驱动的变化调整和稳健的轮廓似然比DE测试。仿真研究表明,随着样本量的增加,RoPE的性能优于现有工具,并且具有最可靠的错误率控制。RoPE的应用表明,活性铜绿假单胞菌感染下调了SLC9A3囊性纤维化修饰基因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

RoPE: A robust profile likelihood method for differential gene expression analysis

RoPE: A robust profile likelihood method for differential gene expression analysis

Variation in RNA-Seq data creates modeling challenges for differential gene expression (DE) analysis. Statistical approaches address conventional small sample sizes and implement empirical Bayes or non-parametric tests, but frequently produce different conclusions. Increasing sample sizes enable proposal of alternative DE paradigms. Here we develop RoPE, which uses a data-driven adjustment for variation and a robust profile likelihood ratio DE test. Simulation studies show RoPE can have improved performance over existing tools as sample size increases and has the most reliable control of error rates. Application of RoPE demonstrates that an active Pseudomonas aeruginosa infection downregulates the SLC9A3 Cystic Fibrosis modifier gene.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Genetic Epidemiology
Genetic Epidemiology 医学-公共卫生、环境卫生与职业卫生
CiteScore
4.40
自引率
9.50%
发文量
49
审稿时长
6-12 weeks
期刊介绍: Genetic Epidemiology is a peer-reviewed journal for discussion of research on the genetic causes of the distribution of human traits in families and populations. Emphasis is placed on the relative contribution of genetic and environmental factors to human disease as revealed by genetic, epidemiological, and biologic investigations. Genetic Epidemiology primarily publishes papers in statistical genetics, a research field that is primarily concerned with development of statistical, bioinformatical, and computational models for analyzing genetic data. Incorporation of underlying biology and population genetics into conceptual models is favored. The Journal seeks original articles comprising either applied research or innovative statistical, mathematical, computational, or genomic methodologies that advance studies in genetic epidemiology. Other types of reports are encouraged, such as letters to the editor, topic reviews, and perspectives from other fields of research that will likely enrich the field of genetic epidemiology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信