Ruth Cano-Corres, Gemma Sole-Enrech, Maria Isabel Aparicio-Calvente
{"title":"六种生化分析物黄疸干扰指数的定义。","authors":"Ruth Cano-Corres, Gemma Sole-Enrech, Maria Isabel Aparicio-Calvente","doi":"10.11613/BM.2023.020702","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Icterus, if not detected, can affect the validity of results delivered by clinical laboratories, leading to erroneous results. This study aims to define bilirubin interference for some biochemical analytes and compare it with the manufacturer's data.</p><p><strong>Material and methods: </strong>Serum pools prepared with outpatients' samples were spiked with increasing bilirubin concentration (Merck, reference14370, Darmstadt, Germany) up to 513 µmol/L in order to evaluate the bias for the following biochemical analytes: creatinine (CREA), creatine kinase (CK), cholesterol (CHOL), gamma-glutamyltransferase (GGT), high-density lipoprotein cholesterol (HDL), and total protein (TP). For each analyte, six pools of different concentrations were prepared. Measurements were made employing Cobas 8000 analyser c702-502, Roche Diagnostics (Mannheim, Germany). This study employed a study procedure defined by the Spanish Society of Laboratory Medicine.</p><p><strong>Results: </strong>Obtained bilirubin concentrations producing a negative interference were 103 µmol/L for CHOL, 205 µmol/L for TP and 410 µmol/L for CK, but only for CK values less than 100 U/L. Bilirubin concentrations lower than 513 µmol/L do not produce interference for HDL and GGT. Finally, for the studied bilirubin concentrations, there is no interference for CREA higher than 80 µmol/L.</p><p><strong>Conclusion: </strong>Icterus interferences have been defined for each analyte, observing differences compared to data provided by the manufacturer. The evidence indicates that each laboratory should evaluate icteric interferences to ensure the high quality of the delivered results, thus benefiting patient care.</p>","PeriodicalId":9021,"journal":{"name":"Biochemia Medica","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2023-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10231764/pdf/","citationCount":"0","resultStr":"{\"title\":\"Definition of icteric interference index for six biochemical analytes.\",\"authors\":\"Ruth Cano-Corres, Gemma Sole-Enrech, Maria Isabel Aparicio-Calvente\",\"doi\":\"10.11613/BM.2023.020702\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Icterus, if not detected, can affect the validity of results delivered by clinical laboratories, leading to erroneous results. This study aims to define bilirubin interference for some biochemical analytes and compare it with the manufacturer's data.</p><p><strong>Material and methods: </strong>Serum pools prepared with outpatients' samples were spiked with increasing bilirubin concentration (Merck, reference14370, Darmstadt, Germany) up to 513 µmol/L in order to evaluate the bias for the following biochemical analytes: creatinine (CREA), creatine kinase (CK), cholesterol (CHOL), gamma-glutamyltransferase (GGT), high-density lipoprotein cholesterol (HDL), and total protein (TP). For each analyte, six pools of different concentrations were prepared. Measurements were made employing Cobas 8000 analyser c702-502, Roche Diagnostics (Mannheim, Germany). This study employed a study procedure defined by the Spanish Society of Laboratory Medicine.</p><p><strong>Results: </strong>Obtained bilirubin concentrations producing a negative interference were 103 µmol/L for CHOL, 205 µmol/L for TP and 410 µmol/L for CK, but only for CK values less than 100 U/L. Bilirubin concentrations lower than 513 µmol/L do not produce interference for HDL and GGT. Finally, for the studied bilirubin concentrations, there is no interference for CREA higher than 80 µmol/L.</p><p><strong>Conclusion: </strong>Icterus interferences have been defined for each analyte, observing differences compared to data provided by the manufacturer. The evidence indicates that each laboratory should evaluate icteric interferences to ensure the high quality of the delivered results, thus benefiting patient care.</p>\",\"PeriodicalId\":9021,\"journal\":{\"name\":\"Biochemia Medica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2023-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10231764/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemia Medica\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.11613/BM.2023.020702\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICAL LABORATORY TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemia Medica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.11613/BM.2023.020702","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICAL LABORATORY TECHNOLOGY","Score":null,"Total":0}
Definition of icteric interference index for six biochemical analytes.
Introduction: Icterus, if not detected, can affect the validity of results delivered by clinical laboratories, leading to erroneous results. This study aims to define bilirubin interference for some biochemical analytes and compare it with the manufacturer's data.
Material and methods: Serum pools prepared with outpatients' samples were spiked with increasing bilirubin concentration (Merck, reference14370, Darmstadt, Germany) up to 513 µmol/L in order to evaluate the bias for the following biochemical analytes: creatinine (CREA), creatine kinase (CK), cholesterol (CHOL), gamma-glutamyltransferase (GGT), high-density lipoprotein cholesterol (HDL), and total protein (TP). For each analyte, six pools of different concentrations were prepared. Measurements were made employing Cobas 8000 analyser c702-502, Roche Diagnostics (Mannheim, Germany). This study employed a study procedure defined by the Spanish Society of Laboratory Medicine.
Results: Obtained bilirubin concentrations producing a negative interference were 103 µmol/L for CHOL, 205 µmol/L for TP and 410 µmol/L for CK, but only for CK values less than 100 U/L. Bilirubin concentrations lower than 513 µmol/L do not produce interference for HDL and GGT. Finally, for the studied bilirubin concentrations, there is no interference for CREA higher than 80 µmol/L.
Conclusion: Icterus interferences have been defined for each analyte, observing differences compared to data provided by the manufacturer. The evidence indicates that each laboratory should evaluate icteric interferences to ensure the high quality of the delivered results, thus benefiting patient care.
期刊介绍:
Biochemia Medica is the official peer-reviewed journal of the Croatian Society of Medical Biochemistry and Laboratory Medicine. Journal provides a wide coverage of research in all aspects of clinical chemistry and laboratory medicine. Following categories fit into the scope of the Journal: general clinical chemistry, haematology and haemostasis, molecular diagnostics and endocrinology. Development, validation and verification of analytical techniques and methods applicable to clinical chemistry and laboratory medicine are welcome as well as studies dealing with laboratory organization, automation and quality control. Journal publishes on a regular basis educative preanalytical case reports (Preanalytical mysteries), articles dealing with applied biostatistics (Lessons in biostatistics) and research integrity (Research integrity corner).