Aline Larissa Gonçalves , Paula Macedo Cunha , Awana da Silva Lima , Júlio César dos Santos, Fernando Segato
{"title":"重组裂解多糖单加氧酶的制备及其在烟曲霉niveus鸡尾酒中对甘蔗渣糖化作用的评价","authors":"Aline Larissa Gonçalves , Paula Macedo Cunha , Awana da Silva Lima , Júlio César dos Santos, Fernando Segato","doi":"10.1016/j.bbapap.2023.140919","DOIUrl":null,"url":null,"abstract":"<div><p><span>Lignocellulosic biomass is a promising alternative for producing biofuels, despite its recalcitrant nature. There are microorganisms in nature capable of efficiently degrade biomass, such as the filamentous fungi. Among them, </span><span><em>Aspergillus fumigatus</em></span> var. <em>niveus</em><span><span> (AFUMN) has a wide variety of carbohydrate-active enzymes<span> (CAZymes), especially hydrolases, but a low number of </span></span>oxidative enzymes<span><span><span> in its genome. To confirm the enzymatic profile of this fungus, this study analyzed the secretome of AFUMN cultured in sugarcane </span>bagasse<span> as the sole carbon source. As expected, the secretome showed a predominance of hydrolytic enzymes compared to oxidative activity. However, it is known that hydrolytic enzymes act in synergy with oxidative proteins to efficiently degrade cellulose polymer, such as the Lytic </span></span>Polysaccharide<span> Monooxygenases (LPMOs). Thus, three LPMOs from the fungus </span></span></span><em>Thermothelomyces thermophilus</em> (<em>Tt</em>LPMO9D, <em>Tt</em>LPMO9H, and <em>Tt</em>LPMO9O) were selected, heterologous expressed in <span><em>Aspergillus nidulans</em></span><span>, purified, and used to supplement the AFUMN secretome to evaluate their effect on the saccharification of sugarcane bagasse. The saccharification assay was carried out using different concentrations of AFUMN secretome supplemented with recombinant </span><em>T. thermophilus</em><span> LPMOs, as well as ascorbic acid as reducing agent for oxidative enzymes. Through a statistic design created by Design-Expert software, we were able to analyze a possible cooperative effect between these components. The results indicated that, in general, the addition of </span><em>Tt</em>LPMO9D and ascorbic acid did not favor the conversion process in this study, while <em>Tt</em>LPMO9O had a highly significant cooperative effect in bagasse saccharification compared to the control using only AFUMN secretome.</p></div>","PeriodicalId":8760,"journal":{"name":"Biochimica et biophysica acta. Proteins and proteomics","volume":"1871 4","pages":"Article 140919"},"PeriodicalIF":2.5000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Production of recombinant lytic polysaccharide monooxygenases and evaluation effect of its addition into Aspergillus fumigatus var. niveus cocktail for sugarcane bagasse saccharification\",\"authors\":\"Aline Larissa Gonçalves , Paula Macedo Cunha , Awana da Silva Lima , Júlio César dos Santos, Fernando Segato\",\"doi\":\"10.1016/j.bbapap.2023.140919\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>Lignocellulosic biomass is a promising alternative for producing biofuels, despite its recalcitrant nature. There are microorganisms in nature capable of efficiently degrade biomass, such as the filamentous fungi. Among them, </span><span><em>Aspergillus fumigatus</em></span> var. <em>niveus</em><span><span> (AFUMN) has a wide variety of carbohydrate-active enzymes<span> (CAZymes), especially hydrolases, but a low number of </span></span>oxidative enzymes<span><span><span> in its genome. To confirm the enzymatic profile of this fungus, this study analyzed the secretome of AFUMN cultured in sugarcane </span>bagasse<span> as the sole carbon source. As expected, the secretome showed a predominance of hydrolytic enzymes compared to oxidative activity. However, it is known that hydrolytic enzymes act in synergy with oxidative proteins to efficiently degrade cellulose polymer, such as the Lytic </span></span>Polysaccharide<span> Monooxygenases (LPMOs). Thus, three LPMOs from the fungus </span></span></span><em>Thermothelomyces thermophilus</em> (<em>Tt</em>LPMO9D, <em>Tt</em>LPMO9H, and <em>Tt</em>LPMO9O) were selected, heterologous expressed in <span><em>Aspergillus nidulans</em></span><span>, purified, and used to supplement the AFUMN secretome to evaluate their effect on the saccharification of sugarcane bagasse. The saccharification assay was carried out using different concentrations of AFUMN secretome supplemented with recombinant </span><em>T. thermophilus</em><span> LPMOs, as well as ascorbic acid as reducing agent for oxidative enzymes. Through a statistic design created by Design-Expert software, we were able to analyze a possible cooperative effect between these components. The results indicated that, in general, the addition of </span><em>Tt</em>LPMO9D and ascorbic acid did not favor the conversion process in this study, while <em>Tt</em>LPMO9O had a highly significant cooperative effect in bagasse saccharification compared to the control using only AFUMN secretome.</p></div>\",\"PeriodicalId\":8760,\"journal\":{\"name\":\"Biochimica et biophysica acta. Proteins and proteomics\",\"volume\":\"1871 4\",\"pages\":\"Article 140919\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochimica et biophysica acta. Proteins and proteomics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S157096392300033X\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. Proteins and proteomics","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S157096392300033X","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Production of recombinant lytic polysaccharide monooxygenases and evaluation effect of its addition into Aspergillus fumigatus var. niveus cocktail for sugarcane bagasse saccharification
Lignocellulosic biomass is a promising alternative for producing biofuels, despite its recalcitrant nature. There are microorganisms in nature capable of efficiently degrade biomass, such as the filamentous fungi. Among them, Aspergillus fumigatus var. niveus (AFUMN) has a wide variety of carbohydrate-active enzymes (CAZymes), especially hydrolases, but a low number of oxidative enzymes in its genome. To confirm the enzymatic profile of this fungus, this study analyzed the secretome of AFUMN cultured in sugarcane bagasse as the sole carbon source. As expected, the secretome showed a predominance of hydrolytic enzymes compared to oxidative activity. However, it is known that hydrolytic enzymes act in synergy with oxidative proteins to efficiently degrade cellulose polymer, such as the Lytic Polysaccharide Monooxygenases (LPMOs). Thus, three LPMOs from the fungus Thermothelomyces thermophilus (TtLPMO9D, TtLPMO9H, and TtLPMO9O) were selected, heterologous expressed in Aspergillus nidulans, purified, and used to supplement the AFUMN secretome to evaluate their effect on the saccharification of sugarcane bagasse. The saccharification assay was carried out using different concentrations of AFUMN secretome supplemented with recombinant T. thermophilus LPMOs, as well as ascorbic acid as reducing agent for oxidative enzymes. Through a statistic design created by Design-Expert software, we were able to analyze a possible cooperative effect between these components. The results indicated that, in general, the addition of TtLPMO9D and ascorbic acid did not favor the conversion process in this study, while TtLPMO9O had a highly significant cooperative effect in bagasse saccharification compared to the control using only AFUMN secretome.
期刊介绍:
BBA Proteins and Proteomics covers protein structure conformation and dynamics; protein folding; protein-ligand interactions; enzyme mechanisms, models and kinetics; protein physical properties and spectroscopy; and proteomics and bioinformatics analyses of protein structure, protein function, or protein regulation.