在多层次模型中集中分类预测因子:最佳实践和解释。

IF 7.6 1区 心理学 Q1 PSYCHOLOGY, MULTIDISCIPLINARY
Haley E Yaremych, Kristopher J Preacher, Donald Hedeker
{"title":"在多层次模型中集中分类预测因子:最佳实践和解释。","authors":"Haley E Yaremych,&nbsp;Kristopher J Preacher,&nbsp;Donald Hedeker","doi":"10.1037/met0000434","DOIUrl":null,"url":null,"abstract":"<p><p>The topic of centering in multilevel modeling (MLM) has received substantial attention from methodologists, as different centering choices for lower-level predictors present important ramifications for the estimation and interpretation of model parameters. However, the centering literature has focused almost exclusively on continuous predictors, with little attention paid to whether and how categorical predictors should be centered, despite their ubiquity across applied fields. Alongside this gap in the methodological literature, a review of applied articles showed that researchers center categorical predictors infrequently and inconsistently. Algebraically and statistically, continuous and categorical predictors behave the same, but researchers using them do not, and for many, interpreting the effects of categorical predictors is not intuitive. Thus, the goals of this tutorial article are twofold: to clarify why and how categorical predictors should be centered in MLM, and to explain how multilevel regression coefficients resulting from centered categorical predictors should be interpreted. We first provide algebraic support showing that uncentered coding variables result in a conflated blend of the within- and between-cluster effects of a multicategorical predictor, whereas appropriate centering techniques yield level-specific effects. Next, we provide algebraic derivations to illuminate precisely how the within- and between-cluster effects of a multicategorical predictor should be interpreted under dummy, contrast, and effect coding schemes. Finally, we provide a detailed demonstration of our conclusions with an empirical example. Implications for practice, including relevance of our findings to categorical control variables (i.e., covariates), interaction terms with categorical focal predictors, and multilevel latent variable models, are discussed. (PsycInfo Database Record (c) 2023 APA, all rights reserved).</p>","PeriodicalId":20782,"journal":{"name":"Psychological methods","volume":"28 3","pages":"613-630"},"PeriodicalIF":7.6000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":"{\"title\":\"Centering categorical predictors in multilevel models: Best practices and interpretation.\",\"authors\":\"Haley E Yaremych,&nbsp;Kristopher J Preacher,&nbsp;Donald Hedeker\",\"doi\":\"10.1037/met0000434\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The topic of centering in multilevel modeling (MLM) has received substantial attention from methodologists, as different centering choices for lower-level predictors present important ramifications for the estimation and interpretation of model parameters. However, the centering literature has focused almost exclusively on continuous predictors, with little attention paid to whether and how categorical predictors should be centered, despite their ubiquity across applied fields. Alongside this gap in the methodological literature, a review of applied articles showed that researchers center categorical predictors infrequently and inconsistently. Algebraically and statistically, continuous and categorical predictors behave the same, but researchers using them do not, and for many, interpreting the effects of categorical predictors is not intuitive. Thus, the goals of this tutorial article are twofold: to clarify why and how categorical predictors should be centered in MLM, and to explain how multilevel regression coefficients resulting from centered categorical predictors should be interpreted. We first provide algebraic support showing that uncentered coding variables result in a conflated blend of the within- and between-cluster effects of a multicategorical predictor, whereas appropriate centering techniques yield level-specific effects. Next, we provide algebraic derivations to illuminate precisely how the within- and between-cluster effects of a multicategorical predictor should be interpreted under dummy, contrast, and effect coding schemes. Finally, we provide a detailed demonstration of our conclusions with an empirical example. Implications for practice, including relevance of our findings to categorical control variables (i.e., covariates), interaction terms with categorical focal predictors, and multilevel latent variable models, are discussed. (PsycInfo Database Record (c) 2023 APA, all rights reserved).</p>\",\"PeriodicalId\":20782,\"journal\":{\"name\":\"Psychological methods\",\"volume\":\"28 3\",\"pages\":\"613-630\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"36\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Psychological methods\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1037/met0000434\",\"RegionNum\":1,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PSYCHOLOGY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychological methods","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1037/met0000434","RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHOLOGY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 36

摘要

多层次建模(MLM)中的定心问题受到了方法学家的广泛关注,因为对较低层次预测因子的不同定心选择对模型参数的估计和解释产生了重要影响。然而,中心文献几乎只关注连续预测因子,很少关注分类预测因子是否应该中心以及如何中心,尽管它们在应用领域中无处不在。除了方法学文献中的这一空白之外,对应用文章的回顾表明,研究人员很少且不一致地将分类预测因子放在中心。在代数和统计上,连续预测和分类预测的行为是一样的,但是研究者使用它们时却不一样,而且对许多人来说,解释分类预测的效果并不直观。因此,这篇教程的目标是双重的:澄清为什么和如何在传销中集中分类预测因子,并解释如何解释由集中分类预测因子产生的多水平回归系数。我们首先提供了代数支持,表明非中心编码变量导致多类别预测器簇内和簇间效应的合并混合,而适当的中心技术产生特定水平的效应。接下来,我们提供了代数推导,以精确地阐明如何在虚拟、对比和效果编码方案下解释多分类预测器的簇内和簇间效应。最后,通过一个实证例子对我们的结论进行了详细的论证。对实践的影响,包括我们的研究结果与分类控制变量(即协变量)的相关性,与分类焦点预测因子的相互作用项,以及多水平潜在变量模型,进行了讨论。(PsycInfo数据库记录(c) 2023 APA,版权所有)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Centering categorical predictors in multilevel models: Best practices and interpretation.

The topic of centering in multilevel modeling (MLM) has received substantial attention from methodologists, as different centering choices for lower-level predictors present important ramifications for the estimation and interpretation of model parameters. However, the centering literature has focused almost exclusively on continuous predictors, with little attention paid to whether and how categorical predictors should be centered, despite their ubiquity across applied fields. Alongside this gap in the methodological literature, a review of applied articles showed that researchers center categorical predictors infrequently and inconsistently. Algebraically and statistically, continuous and categorical predictors behave the same, but researchers using them do not, and for many, interpreting the effects of categorical predictors is not intuitive. Thus, the goals of this tutorial article are twofold: to clarify why and how categorical predictors should be centered in MLM, and to explain how multilevel regression coefficients resulting from centered categorical predictors should be interpreted. We first provide algebraic support showing that uncentered coding variables result in a conflated blend of the within- and between-cluster effects of a multicategorical predictor, whereas appropriate centering techniques yield level-specific effects. Next, we provide algebraic derivations to illuminate precisely how the within- and between-cluster effects of a multicategorical predictor should be interpreted under dummy, contrast, and effect coding schemes. Finally, we provide a detailed demonstration of our conclusions with an empirical example. Implications for practice, including relevance of our findings to categorical control variables (i.e., covariates), interaction terms with categorical focal predictors, and multilevel latent variable models, are discussed. (PsycInfo Database Record (c) 2023 APA, all rights reserved).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Psychological methods
Psychological methods PSYCHOLOGY, MULTIDISCIPLINARY-
CiteScore
13.10
自引率
7.10%
发文量
159
期刊介绍: Psychological Methods is devoted to the development and dissemination of methods for collecting, analyzing, understanding, and interpreting psychological data. Its purpose is the dissemination of innovations in research design, measurement, methodology, and quantitative and qualitative analysis to the psychological community; its further purpose is to promote effective communication about related substantive and methodological issues. The audience is expected to be diverse and to include those who develop new procedures, those who are responsible for undergraduate and graduate training in design, measurement, and statistics, as well as those who employ those procedures in research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信