Niels Van Brempt , Roberta Sgammato , Quinten Beirinckx , Dietmar Hammerschmid , Frank Sobott , Sylvia Dewilde , Luc Moens , Wouter Herrebout , Christian Johannessen , Sabine Van Doorslaer
{"title":"pH和亚硝酸盐对秀丽隐杆线虫球蛋白偶联神经元跨膜受体GLB-33血袋的影响","authors":"Niels Van Brempt , Roberta Sgammato , Quinten Beirinckx , Dietmar Hammerschmid , Frank Sobott , Sylvia Dewilde , Luc Moens , Wouter Herrebout , Christian Johannessen , Sabine Van Doorslaer","doi":"10.1016/j.bbapap.2023.140913","DOIUrl":null,"url":null,"abstract":"<div><p><span>Out of the 34 globins in </span><em><span>Caenorhabditis elegans</span></em><span>, GLB-33 is a putative globin-coupled transmembrane receptor<span><span> with a yet unknown function. The globin domain (GD) contains a particularly hydrophobic haem pocket, that rapidly oxidizes to a low-spin hydroxide-ligated haem state at physiological pH. Moreover, the GD has one of the fastest nitrite reductase activity ever reported for globins. Here, we use a combination of </span>electronic circular dichroism<span>, resonance Raman and electron paramagnetic resonance (EPR) spectroscopy with mass spectrometry to study the pH dependence of the ferric form of the recombinantly over-expressed GD in the presence and absence of nitrite. The competitive binding of nitrite and hydroxide is examined as well as nitrite-induced haem modifications at acidic pH. Comparison of the spectroscopic results with data from other haem proteins allows to deduce the important effect of Arg at position E10 in stabilization of exogenous ligands. Furthermore, continuous-wave and pulsed EPR indicate that ligation of nitrite occurs in a nitrito mode at pH 5.0 and above. At pH 4.0, an additional formation of a nitro-bound haem form is observed along with fast formation of a nitri-globin.</span></span></span></p></div>","PeriodicalId":8760,"journal":{"name":"Biochimica et biophysica acta. Proteins and proteomics","volume":"1871 4","pages":"Article 140913"},"PeriodicalIF":2.5000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The effect of pH and nitrite on the haem pocket of GLB-33, a globin-coupled neuronal transmembrane receptor of Caenorhabditis elegans\",\"authors\":\"Niels Van Brempt , Roberta Sgammato , Quinten Beirinckx , Dietmar Hammerschmid , Frank Sobott , Sylvia Dewilde , Luc Moens , Wouter Herrebout , Christian Johannessen , Sabine Van Doorslaer\",\"doi\":\"10.1016/j.bbapap.2023.140913\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>Out of the 34 globins in </span><em><span>Caenorhabditis elegans</span></em><span>, GLB-33 is a putative globin-coupled transmembrane receptor<span><span> with a yet unknown function. The globin domain (GD) contains a particularly hydrophobic haem pocket, that rapidly oxidizes to a low-spin hydroxide-ligated haem state at physiological pH. Moreover, the GD has one of the fastest nitrite reductase activity ever reported for globins. Here, we use a combination of </span>electronic circular dichroism<span>, resonance Raman and electron paramagnetic resonance (EPR) spectroscopy with mass spectrometry to study the pH dependence of the ferric form of the recombinantly over-expressed GD in the presence and absence of nitrite. The competitive binding of nitrite and hydroxide is examined as well as nitrite-induced haem modifications at acidic pH. Comparison of the spectroscopic results with data from other haem proteins allows to deduce the important effect of Arg at position E10 in stabilization of exogenous ligands. Furthermore, continuous-wave and pulsed EPR indicate that ligation of nitrite occurs in a nitrito mode at pH 5.0 and above. At pH 4.0, an additional formation of a nitro-bound haem form is observed along with fast formation of a nitri-globin.</span></span></span></p></div>\",\"PeriodicalId\":8760,\"journal\":{\"name\":\"Biochimica et biophysica acta. Proteins and proteomics\",\"volume\":\"1871 4\",\"pages\":\"Article 140913\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochimica et biophysica acta. Proteins and proteomics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1570963923000274\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. Proteins and proteomics","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1570963923000274","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
The effect of pH and nitrite on the haem pocket of GLB-33, a globin-coupled neuronal transmembrane receptor of Caenorhabditis elegans
Out of the 34 globins in Caenorhabditis elegans, GLB-33 is a putative globin-coupled transmembrane receptor with a yet unknown function. The globin domain (GD) contains a particularly hydrophobic haem pocket, that rapidly oxidizes to a low-spin hydroxide-ligated haem state at physiological pH. Moreover, the GD has one of the fastest nitrite reductase activity ever reported for globins. Here, we use a combination of electronic circular dichroism, resonance Raman and electron paramagnetic resonance (EPR) spectroscopy with mass spectrometry to study the pH dependence of the ferric form of the recombinantly over-expressed GD in the presence and absence of nitrite. The competitive binding of nitrite and hydroxide is examined as well as nitrite-induced haem modifications at acidic pH. Comparison of the spectroscopic results with data from other haem proteins allows to deduce the important effect of Arg at position E10 in stabilization of exogenous ligands. Furthermore, continuous-wave and pulsed EPR indicate that ligation of nitrite occurs in a nitrito mode at pH 5.0 and above. At pH 4.0, an additional formation of a nitro-bound haem form is observed along with fast formation of a nitri-globin.
期刊介绍:
BBA Proteins and Proteomics covers protein structure conformation and dynamics; protein folding; protein-ligand interactions; enzyme mechanisms, models and kinetics; protein physical properties and spectroscopy; and proteomics and bioinformatics analyses of protein structure, protein function, or protein regulation.