{"title":"卡氏地杆菌中两种不同的丙氨酸脱氢酶的生化特性及其在营养细胞和孢子中的差异表达","authors":"Miku Maeno , Taketo Ohmori , Daiki Nukada , Haruhiko Sakuraba , Takenori Satomura , Toshihisa Ohshima","doi":"10.1016/j.bbapap.2023.140904","DOIUrl":null,"url":null,"abstract":"<div><p><span>Two putative alanine<span> dehydrogenase (AlaDH) genes (</span></span><em>GK2752</em> and <em>GK3448</em>) were found in the genome of a thermophilic spore-forming bacterium, <span><em>Geobacillus</em><em> kaustophilus.</em></span><span> The amino acid sequences<span> deduced from the two genes showed mutually high homology (71%), and the phylogenetic tree based on the amino acid sequences of the two putative AlaDHs and the homologous proteins showed that the two putative AlaDH genes (</span></span><em>GK2752</em> and <em>GK3448</em><span>) belong to different groups. Both of the recombinant gene products exhibited high NAD</span><sup>+</sup><span>-dependent AlaDH activity and were purified to homogeneity and characterized in detail. Both enzymes showed high stability against low and high pHs and high temperatures (70 °C). Kinetic analyses showed that the activities of both enzymes proceeded according to the same sequentially ordered Bi-Ter mechanism. X-ray crystallographic analysis showed the two AlaDHs to have similar homohexameric structures. Notably, GK3448-AlaDH was detected in vegetative cells of </span><em>G. kaustophilus</em> but not spores, while GK2752-AlaDH was present only in the spores. This is the first report showing the presence of two AlaDHs separately expressed in vegetative cells and spores.</p></div>","PeriodicalId":8760,"journal":{"name":"Biochimica et biophysica acta. Proteins and proteomics","volume":"1871 4","pages":"Article 140904"},"PeriodicalIF":2.5000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Two different alanine dehydrogenases from Geobacillus kaustophilus: Their biochemical characteristics and differential expression in vegetative cells and spores\",\"authors\":\"Miku Maeno , Taketo Ohmori , Daiki Nukada , Haruhiko Sakuraba , Takenori Satomura , Toshihisa Ohshima\",\"doi\":\"10.1016/j.bbapap.2023.140904\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>Two putative alanine<span> dehydrogenase (AlaDH) genes (</span></span><em>GK2752</em> and <em>GK3448</em>) were found in the genome of a thermophilic spore-forming bacterium, <span><em>Geobacillus</em><em> kaustophilus.</em></span><span> The amino acid sequences<span> deduced from the two genes showed mutually high homology (71%), and the phylogenetic tree based on the amino acid sequences of the two putative AlaDHs and the homologous proteins showed that the two putative AlaDH genes (</span></span><em>GK2752</em> and <em>GK3448</em><span>) belong to different groups. Both of the recombinant gene products exhibited high NAD</span><sup>+</sup><span>-dependent AlaDH activity and were purified to homogeneity and characterized in detail. Both enzymes showed high stability against low and high pHs and high temperatures (70 °C). Kinetic analyses showed that the activities of both enzymes proceeded according to the same sequentially ordered Bi-Ter mechanism. X-ray crystallographic analysis showed the two AlaDHs to have similar homohexameric structures. Notably, GK3448-AlaDH was detected in vegetative cells of </span><em>G. kaustophilus</em> but not spores, while GK2752-AlaDH was present only in the spores. This is the first report showing the presence of two AlaDHs separately expressed in vegetative cells and spores.</p></div>\",\"PeriodicalId\":8760,\"journal\":{\"name\":\"Biochimica et biophysica acta. Proteins and proteomics\",\"volume\":\"1871 4\",\"pages\":\"Article 140904\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochimica et biophysica acta. Proteins and proteomics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1570963923000183\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. Proteins and proteomics","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1570963923000183","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Two different alanine dehydrogenases from Geobacillus kaustophilus: Their biochemical characteristics and differential expression in vegetative cells and spores
Two putative alanine dehydrogenase (AlaDH) genes (GK2752 and GK3448) were found in the genome of a thermophilic spore-forming bacterium, Geobacillus kaustophilus. The amino acid sequences deduced from the two genes showed mutually high homology (71%), and the phylogenetic tree based on the amino acid sequences of the two putative AlaDHs and the homologous proteins showed that the two putative AlaDH genes (GK2752 and GK3448) belong to different groups. Both of the recombinant gene products exhibited high NAD+-dependent AlaDH activity and were purified to homogeneity and characterized in detail. Both enzymes showed high stability against low and high pHs and high temperatures (70 °C). Kinetic analyses showed that the activities of both enzymes proceeded according to the same sequentially ordered Bi-Ter mechanism. X-ray crystallographic analysis showed the two AlaDHs to have similar homohexameric structures. Notably, GK3448-AlaDH was detected in vegetative cells of G. kaustophilus but not spores, while GK2752-AlaDH was present only in the spores. This is the first report showing the presence of two AlaDHs separately expressed in vegetative cells and spores.
期刊介绍:
BBA Proteins and Proteomics covers protein structure conformation and dynamics; protein folding; protein-ligand interactions; enzyme mechanisms, models and kinetics; protein physical properties and spectroscopy; and proteomics and bioinformatics analyses of protein structure, protein function, or protein regulation.