用单细胞测序破译成体神经干细胞。

IF 2.5 3区 医学 Q3 CELL & TISSUE ENGINEERING
Yidan Liu, Yingting Zhu, Yunhong Shi, Xiuxing Liu, Wenru Su, Yehong Zhuo
{"title":"用单细胞测序破译成体神经干细胞。","authors":"Yidan Liu,&nbsp;Yingting Zhu,&nbsp;Yunhong Shi,&nbsp;Xiuxing Liu,&nbsp;Wenru Su,&nbsp;Yehong Zhuo","doi":"10.1089/scd.2022.0234","DOIUrl":null,"url":null,"abstract":"<p><p>Adult neural stem cells (NSCs) are restricted to the two neurogenic regions of the mammalian brain, where they self-renew and generate progenies of multiple lineages, including neurons, astrocytes, and oligodendrocytes. Single-cell RNA sequencing technology, which reconstructs high-resolution transcriptional landscapes, provides valuable insights into cellular heterogeneity and developmental dynamics. In this review, we overviewed recent progress in the single-cell analyses of both conventional and unconventional NSCs. We discussed the heterogeneity among the stem cell pool and characterized the transcriptional alterations in aging and brain tumors. A comprehensive understanding of NSCs in physiological and pathological settings will provide insights for the rejuvenation of the aged brain and restoration of normal brain function in multiple neurological disorders.</p>","PeriodicalId":21934,"journal":{"name":"Stem cells and development","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Deciphering Adult Neural Stem Cells with Single-Cell Sequencing.\",\"authors\":\"Yidan Liu,&nbsp;Yingting Zhu,&nbsp;Yunhong Shi,&nbsp;Xiuxing Liu,&nbsp;Wenru Su,&nbsp;Yehong Zhuo\",\"doi\":\"10.1089/scd.2022.0234\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Adult neural stem cells (NSCs) are restricted to the two neurogenic regions of the mammalian brain, where they self-renew and generate progenies of multiple lineages, including neurons, astrocytes, and oligodendrocytes. Single-cell RNA sequencing technology, which reconstructs high-resolution transcriptional landscapes, provides valuable insights into cellular heterogeneity and developmental dynamics. In this review, we overviewed recent progress in the single-cell analyses of both conventional and unconventional NSCs. We discussed the heterogeneity among the stem cell pool and characterized the transcriptional alterations in aging and brain tumors. A comprehensive understanding of NSCs in physiological and pathological settings will provide insights for the rejuvenation of the aged brain and restoration of normal brain function in multiple neurological disorders.</p>\",\"PeriodicalId\":21934,\"journal\":{\"name\":\"Stem cells and development\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stem cells and development\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1089/scd.2022.0234\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stem cells and development","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/scd.2022.0234","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 2

摘要

成体神经干细胞(NSCs)局限于哺乳动物大脑的两个神经发生区域,在那里它们自我更新并产生多种谱系的后代,包括神经元、星形胶质细胞和少突胶质细胞。单细胞RNA测序技术,重建高分辨率转录景观,提供有价值的见解细胞异质性和发育动力学。在这篇综述中,我们综述了传统和非常规NSCs单细胞分析的最新进展。我们讨论了干细胞库的异质性,并描述了衰老和脑肿瘤的转录改变。全面了解NSCs在生理和病理环境中的作用,将为多种神经系统疾病的老年大脑再生和正常脑功能的恢复提供见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deciphering Adult Neural Stem Cells with Single-Cell Sequencing.

Adult neural stem cells (NSCs) are restricted to the two neurogenic regions of the mammalian brain, where they self-renew and generate progenies of multiple lineages, including neurons, astrocytes, and oligodendrocytes. Single-cell RNA sequencing technology, which reconstructs high-resolution transcriptional landscapes, provides valuable insights into cellular heterogeneity and developmental dynamics. In this review, we overviewed recent progress in the single-cell analyses of both conventional and unconventional NSCs. We discussed the heterogeneity among the stem cell pool and characterized the transcriptional alterations in aging and brain tumors. A comprehensive understanding of NSCs in physiological and pathological settings will provide insights for the rejuvenation of the aged brain and restoration of normal brain function in multiple neurological disorders.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Stem cells and development
Stem cells and development 医学-细胞与组织工程
CiteScore
7.80
自引率
2.50%
发文量
69
审稿时长
3 months
期刊介绍: Stem Cells and Development is globally recognized as the trusted source for critical, even controversial coverage of emerging hypotheses and novel findings. With a focus on stem cells of all tissue types and their potential therapeutic applications, the Journal provides clinical, basic, and translational scientists with cutting-edge research and findings. Stem Cells and Development coverage includes: Embryogenesis and adult counterparts of this process Physical processes linking stem cells, primary cell function, and structural development Hypotheses exploring the relationship between genotype and phenotype Development of vasculature, CNS, and other germ layer development and defects Pluripotentiality of embryonic and somatic stem cells The role of genetic and epigenetic factors in development
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信