核酸纳米材料在线粒体功能障碍治疗中的应用。

IF 2.1 4区 医学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Lan Yao, Qing Hai, Tao Zhang
{"title":"核酸纳米材料在线粒体功能障碍治疗中的应用。","authors":"Lan Yao,&nbsp;Qing Hai,&nbsp;Tao Zhang","doi":"10.2174/1389200224666230614115655","DOIUrl":null,"url":null,"abstract":"<p><p>Mitochondrial dysfunction is considered highly related to the development and progression of diseases, including cancer, metabolism disturbance, and neurodegeneration. Traditional pharmacological approach for mitochondrial dysfunction treatment has off-target and dose-dependent side effects, which leads to the emergence of mitochondrial gene therapy by regulating coding or noncoding genes by using nucleic acid sequences such as oligonucleotides, peptide nucleic acids, rRNA, siRNA, etc. To avoid size heterogeneity and potential cytotoxicity of the traditional delivery vehicle like liposome, framework nucleic acids have shown promising potentials. First, special spatial structure like tetrahedron allows entry into cells without transfection reagents. Second, the nature of nucleic acid provides the editability of framework structure, more sites and methods for drug loading and targeted sequences linking, providing efficient transportation and accurate targeting to mitochondria. Third, controllable size leads a possibility to go through biological barrier such as the blood-brain barrier, reaching the central nervous system to reverse mitochondria-related neurodegeneration. In addition, it's biocompatibility and physiological environmental stability open up the possibility of in vivo treatments for mitochondrial dysfunction. Furthermore, we discuss the challenges and opportunities of framework nucleic acids-based delivery systems in mitochondrial dysfunction.</p>","PeriodicalId":10770,"journal":{"name":"Current drug metabolism","volume":" ","pages":"393-403"},"PeriodicalIF":2.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Application of Nucleic Acid Nanomaterials in the Treatment of Mitochondrial Dysfunction.\",\"authors\":\"Lan Yao,&nbsp;Qing Hai,&nbsp;Tao Zhang\",\"doi\":\"10.2174/1389200224666230614115655\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mitochondrial dysfunction is considered highly related to the development and progression of diseases, including cancer, metabolism disturbance, and neurodegeneration. Traditional pharmacological approach for mitochondrial dysfunction treatment has off-target and dose-dependent side effects, which leads to the emergence of mitochondrial gene therapy by regulating coding or noncoding genes by using nucleic acid sequences such as oligonucleotides, peptide nucleic acids, rRNA, siRNA, etc. To avoid size heterogeneity and potential cytotoxicity of the traditional delivery vehicle like liposome, framework nucleic acids have shown promising potentials. First, special spatial structure like tetrahedron allows entry into cells without transfection reagents. Second, the nature of nucleic acid provides the editability of framework structure, more sites and methods for drug loading and targeted sequences linking, providing efficient transportation and accurate targeting to mitochondria. Third, controllable size leads a possibility to go through biological barrier such as the blood-brain barrier, reaching the central nervous system to reverse mitochondria-related neurodegeneration. In addition, it's biocompatibility and physiological environmental stability open up the possibility of in vivo treatments for mitochondrial dysfunction. Furthermore, we discuss the challenges and opportunities of framework nucleic acids-based delivery systems in mitochondrial dysfunction.</p>\",\"PeriodicalId\":10770,\"journal\":{\"name\":\"Current drug metabolism\",\"volume\":\" \",\"pages\":\"393-403\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current drug metabolism\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/1389200224666230614115655\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current drug metabolism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/1389200224666230614115655","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

线粒体功能障碍被认为与疾病的发展和进展高度相关,包括癌症、代谢紊乱和神经退行性变。传统的治疗线粒体功能障碍的药理学方法具有脱靶和剂量依赖性的副作用,这导致了线粒体基因疗法的出现,该疗法通过使用寡核苷酸、肽核酸、rRNA、siRNA等核酸序列来调节编码或非编码基因。为了避免脂质体等传统递送载体的尺寸异质性和潜在的细胞毒性,框架核酸显示出了很有前途的潜力。首先,像四面体这样的特殊空间结构允许在没有转染试剂的情况下进入细胞。其次,核酸的性质提供了框架结构的可编辑性、更多的药物装载位点和方法以及靶向序列连接,提供了高效的运输和精确的线粒体靶向。第三,可控的大小有可能通过生物屏障,如血脑屏障,到达中枢神经系统,逆转线粒体相关的神经退行性变。此外,它的生物相容性和生理环境稳定性为线粒体功能障碍的体内治疗开辟了可能性。此外,我们还讨论了基于框架核酸的递送系统在线粒体功能障碍中的挑战和机遇。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Application of Nucleic Acid Nanomaterials in the Treatment of Mitochondrial Dysfunction.

Mitochondrial dysfunction is considered highly related to the development and progression of diseases, including cancer, metabolism disturbance, and neurodegeneration. Traditional pharmacological approach for mitochondrial dysfunction treatment has off-target and dose-dependent side effects, which leads to the emergence of mitochondrial gene therapy by regulating coding or noncoding genes by using nucleic acid sequences such as oligonucleotides, peptide nucleic acids, rRNA, siRNA, etc. To avoid size heterogeneity and potential cytotoxicity of the traditional delivery vehicle like liposome, framework nucleic acids have shown promising potentials. First, special spatial structure like tetrahedron allows entry into cells without transfection reagents. Second, the nature of nucleic acid provides the editability of framework structure, more sites and methods for drug loading and targeted sequences linking, providing efficient transportation and accurate targeting to mitochondria. Third, controllable size leads a possibility to go through biological barrier such as the blood-brain barrier, reaching the central nervous system to reverse mitochondria-related neurodegeneration. In addition, it's biocompatibility and physiological environmental stability open up the possibility of in vivo treatments for mitochondrial dysfunction. Furthermore, we discuss the challenges and opportunities of framework nucleic acids-based delivery systems in mitochondrial dysfunction.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current drug metabolism
Current drug metabolism 医学-生化与分子生物学
CiteScore
4.30
自引率
4.30%
发文量
81
审稿时长
4-8 weeks
期刊介绍: Current Drug Metabolism aims to cover all the latest and outstanding developments in drug metabolism, pharmacokinetics, and drug disposition. The journal serves as an international forum for the publication of full-length/mini review, research articles and guest edited issues in drug metabolism. Current Drug Metabolism is an essential journal for academic, clinical, government and pharmaceutical scientists who wish to be kept informed and up-to-date with the most important developments. The journal covers the following general topic areas: pharmaceutics, pharmacokinetics, toxicology, and most importantly drug metabolism. More specifically, in vitro and in vivo drug metabolism of phase I and phase II enzymes or metabolic pathways; drug-drug interactions and enzyme kinetics; pharmacokinetics, pharmacokinetic-pharmacodynamic modeling, and toxicokinetics; interspecies differences in metabolism or pharmacokinetics, species scaling and extrapolations; drug transporters; target organ toxicity and interindividual variability in drug exposure-response; extrahepatic metabolism; bioactivation, reactive metabolites, and developments for the identification of drug metabolites. Preclinical and clinical reviews describing the drug metabolism and pharmacokinetics of marketed drugs or drug classes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信