{"title":"注意力分散和认知控制分别影响顶叶和前额叶对疼痛的反应。","authors":"Nicolas Silvestrini, Corrado Corradi-Dell'Acqua","doi":"10.1093/scan/nsad018","DOIUrl":null,"url":null,"abstract":"<p><p>Previous studies have found that distracting someone through a challenging activity leads to hypoalgesia, an effect mediated by parietal and prefrontal processes. Other studies suggest that challenging activities affect the ability to regulate one's aching experiences, due to the partially common neural substrate between cognitive control and pain at the level of the medial prefrontal cortex. We investigated the effects of distraction and cognitive control on pain by delivering noxious stimulations during or after a Stroop paradigm (requiring high cognitive load) or a neutral condition. We found less-intense and unpleasant subjective pain ratings during (compared to after) task execution. This hypoalgesia was associated with enhanced activity at the level of the dorsolateral prefrontal cortex and the posterior parietal cortex, which also showed negative connectivity with the insula. Furthermore, multivariate pattern analysis revealed that distraction altered the neural response to pain, by making it more similar to that associated with previous Stroop tasks. All these effects were independent of the nature of the task, which, instead, led to a localized neural modulation around the anterior cingulate cortex. Overall, our study underscores the role played by two facets of human executive functions, which exert an independent influence on the neural response to pain.</p>","PeriodicalId":21789,"journal":{"name":"Social cognitive and affective neuroscience","volume":"18 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2023-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10157067/pdf/","citationCount":"0","resultStr":"{\"title\":\"Distraction and cognitive control independently impact parietal and prefrontal response to pain.\",\"authors\":\"Nicolas Silvestrini, Corrado Corradi-Dell'Acqua\",\"doi\":\"10.1093/scan/nsad018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Previous studies have found that distracting someone through a challenging activity leads to hypoalgesia, an effect mediated by parietal and prefrontal processes. Other studies suggest that challenging activities affect the ability to regulate one's aching experiences, due to the partially common neural substrate between cognitive control and pain at the level of the medial prefrontal cortex. We investigated the effects of distraction and cognitive control on pain by delivering noxious stimulations during or after a Stroop paradigm (requiring high cognitive load) or a neutral condition. We found less-intense and unpleasant subjective pain ratings during (compared to after) task execution. This hypoalgesia was associated with enhanced activity at the level of the dorsolateral prefrontal cortex and the posterior parietal cortex, which also showed negative connectivity with the insula. Furthermore, multivariate pattern analysis revealed that distraction altered the neural response to pain, by making it more similar to that associated with previous Stroop tasks. All these effects were independent of the nature of the task, which, instead, led to a localized neural modulation around the anterior cingulate cortex. Overall, our study underscores the role played by two facets of human executive functions, which exert an independent influence on the neural response to pain.</p>\",\"PeriodicalId\":21789,\"journal\":{\"name\":\"Social cognitive and affective neuroscience\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2023-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10157067/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Social cognitive and affective neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/scan/nsad018\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Social cognitive and affective neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/scan/nsad018","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Distraction and cognitive control independently impact parietal and prefrontal response to pain.
Previous studies have found that distracting someone through a challenging activity leads to hypoalgesia, an effect mediated by parietal and prefrontal processes. Other studies suggest that challenging activities affect the ability to regulate one's aching experiences, due to the partially common neural substrate between cognitive control and pain at the level of the medial prefrontal cortex. We investigated the effects of distraction and cognitive control on pain by delivering noxious stimulations during or after a Stroop paradigm (requiring high cognitive load) or a neutral condition. We found less-intense and unpleasant subjective pain ratings during (compared to after) task execution. This hypoalgesia was associated with enhanced activity at the level of the dorsolateral prefrontal cortex and the posterior parietal cortex, which also showed negative connectivity with the insula. Furthermore, multivariate pattern analysis revealed that distraction altered the neural response to pain, by making it more similar to that associated with previous Stroop tasks. All these effects were independent of the nature of the task, which, instead, led to a localized neural modulation around the anterior cingulate cortex. Overall, our study underscores the role played by two facets of human executive functions, which exert an independent influence on the neural response to pain.
期刊介绍:
SCAN will consider research that uses neuroimaging (fMRI, MRI, PET, EEG, MEG), neuropsychological patient studies, animal lesion studies, single-cell recording, pharmacological perturbation, and transcranial magnetic stimulation. SCAN will also consider submissions that examine the mediational role of neural processes in linking social phenomena to physiological, neuroendocrine, immunological, developmental, and genetic processes. Additionally, SCAN will publish papers that address issues of mental and physical health as they relate to social and affective processes (e.g., autism, anxiety disorders, depression, stress, effects of child rearing) as long as cognitive neuroscience methods are used.