Alexander G. Clark , Fred E. Bertrand , George Sigounas
{"title":"结肠癌notch介导的EMT中Smad3磷酸化的潜在需求","authors":"Alexander G. Clark , Fred E. Bertrand , George Sigounas","doi":"10.1016/j.jbior.2023.100957","DOIUrl":null,"url":null,"abstract":"<div><p>Colorectal cancer (CRC) remains a challenging disease to treat due to several factors including stemness and epithelial to mesenchymal transition (EMT). Dysfunctional signaling pathways such as Notch and TGF-β contribute to these phenomena. We previously found that cells expressing constitutively active Notch1 also had increased expression of Smad3, an important member of the TGF-β signaling pathway. We hypothesized that Smad3, mediates the Notch-induced stemness and EMT observed in CRC cells. The human colorectal carcinoma cell line HCT-116, stably transduced with constitutively active Notch-1 (ICN) or a GFP-vector control was treated with different combinations of TGF-β1, DAPT (a Notch inhibitor), or SIS3 (a Smad3 inhibitor). Western blot analysis was performed to determine the effects of Smad3 stimulation and inhibition on Notch and potential downstream EMT-related targets, CD44, Slug and Snail. Smad3 inhibition induced a decrease in Notch1 and Notch3 receptor expression and effectively inhibited CD44, Slug, and Snail expression. Colosphere forming ability was also reduced in cells with inhibited Smad3. These results indicate a key role of TGF-β signaling in Notch1-induced tumorigenesis, and suggest a potential use for Smad3 inhibitors in combination with Notch1 inhibitors that are already in use for CRC treatments.</p></div>","PeriodicalId":7214,"journal":{"name":"Advances in biological regulation","volume":"88 ","pages":"Article 100957"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A potential requirement for Smad3 phosphorylation in Notch-mediated EMT in colon cancer\",\"authors\":\"Alexander G. Clark , Fred E. Bertrand , George Sigounas\",\"doi\":\"10.1016/j.jbior.2023.100957\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Colorectal cancer (CRC) remains a challenging disease to treat due to several factors including stemness and epithelial to mesenchymal transition (EMT). Dysfunctional signaling pathways such as Notch and TGF-β contribute to these phenomena. We previously found that cells expressing constitutively active Notch1 also had increased expression of Smad3, an important member of the TGF-β signaling pathway. We hypothesized that Smad3, mediates the Notch-induced stemness and EMT observed in CRC cells. The human colorectal carcinoma cell line HCT-116, stably transduced with constitutively active Notch-1 (ICN) or a GFP-vector control was treated with different combinations of TGF-β1, DAPT (a Notch inhibitor), or SIS3 (a Smad3 inhibitor). Western blot analysis was performed to determine the effects of Smad3 stimulation and inhibition on Notch and potential downstream EMT-related targets, CD44, Slug and Snail. Smad3 inhibition induced a decrease in Notch1 and Notch3 receptor expression and effectively inhibited CD44, Slug, and Snail expression. Colosphere forming ability was also reduced in cells with inhibited Smad3. These results indicate a key role of TGF-β signaling in Notch1-induced tumorigenesis, and suggest a potential use for Smad3 inhibitors in combination with Notch1 inhibitors that are already in use for CRC treatments.</p></div>\",\"PeriodicalId\":7214,\"journal\":{\"name\":\"Advances in biological regulation\",\"volume\":\"88 \",\"pages\":\"Article 100957\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in biological regulation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2212492623000039\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in biological regulation","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212492623000039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
A potential requirement for Smad3 phosphorylation in Notch-mediated EMT in colon cancer
Colorectal cancer (CRC) remains a challenging disease to treat due to several factors including stemness and epithelial to mesenchymal transition (EMT). Dysfunctional signaling pathways such as Notch and TGF-β contribute to these phenomena. We previously found that cells expressing constitutively active Notch1 also had increased expression of Smad3, an important member of the TGF-β signaling pathway. We hypothesized that Smad3, mediates the Notch-induced stemness and EMT observed in CRC cells. The human colorectal carcinoma cell line HCT-116, stably transduced with constitutively active Notch-1 (ICN) or a GFP-vector control was treated with different combinations of TGF-β1, DAPT (a Notch inhibitor), or SIS3 (a Smad3 inhibitor). Western blot analysis was performed to determine the effects of Smad3 stimulation and inhibition on Notch and potential downstream EMT-related targets, CD44, Slug and Snail. Smad3 inhibition induced a decrease in Notch1 and Notch3 receptor expression and effectively inhibited CD44, Slug, and Snail expression. Colosphere forming ability was also reduced in cells with inhibited Smad3. These results indicate a key role of TGF-β signaling in Notch1-induced tumorigenesis, and suggest a potential use for Smad3 inhibitors in combination with Notch1 inhibitors that are already in use for CRC treatments.