{"title":"新冠肺炎病例数比较的同时置信带方法。","authors":"Q Shao","doi":"10.1007/s12561-023-09364-y","DOIUrl":null,"url":null,"abstract":"<p><p>The outbreak of the novel coronavirus (COVID-19) was declared to be a global emergency in January of 2020, and everyday life throughout the world was disrupted. Among many questions about COVID-19 that remain unanswered, it is of interest for society to identify whether there is any significant difference in daily case counts between males and females. The daily case count sequences are correlated due to the nature of a contagious disease, and contain a nonlinear trend owing to several unexpected events, such as vaccinations and the appearance of the delta variant. It is possible that these unexpected events have changed the dynamical system that generates data. The classic <i>t</i>-test is not appropriate to analyze such correlated data with a nonconstant trend. This study applies a simultaneous confidence band approach in an attempt to overcome these difficulties; that is, a simultaneous confidence band for the trend of an autoregressive moving-average time series is constructed using B-spline estimation. The proposed method is applied to the daily case count data of seniors of both genders (at least 60 years old) in the State of Ohio from April 1, 2020 to March 31, 2022, and the result shows that there is a significant difference at the 95% confidence level between the two gender case counts adjusted for the population sizes.</p>","PeriodicalId":45094,"journal":{"name":"Statistics in Biosciences","volume":"15 2","pages":"372-383"},"PeriodicalIF":0.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9989581/pdf/","citationCount":"1","resultStr":"{\"title\":\"Simultaneous Confidence Band Approach for Comparison of COVID-19 Case Counts.\",\"authors\":\"Q Shao\",\"doi\":\"10.1007/s12561-023-09364-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The outbreak of the novel coronavirus (COVID-19) was declared to be a global emergency in January of 2020, and everyday life throughout the world was disrupted. Among many questions about COVID-19 that remain unanswered, it is of interest for society to identify whether there is any significant difference in daily case counts between males and females. The daily case count sequences are correlated due to the nature of a contagious disease, and contain a nonlinear trend owing to several unexpected events, such as vaccinations and the appearance of the delta variant. It is possible that these unexpected events have changed the dynamical system that generates data. The classic <i>t</i>-test is not appropriate to analyze such correlated data with a nonconstant trend. This study applies a simultaneous confidence band approach in an attempt to overcome these difficulties; that is, a simultaneous confidence band for the trend of an autoregressive moving-average time series is constructed using B-spline estimation. The proposed method is applied to the daily case count data of seniors of both genders (at least 60 years old) in the State of Ohio from April 1, 2020 to March 31, 2022, and the result shows that there is a significant difference at the 95% confidence level between the two gender case counts adjusted for the population sizes.</p>\",\"PeriodicalId\":45094,\"journal\":{\"name\":\"Statistics in Biosciences\",\"volume\":\"15 2\",\"pages\":\"372-383\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9989581/pdf/\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistics in Biosciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12561-023-09364-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/3/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics in Biosciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12561-023-09364-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/3/7 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
Simultaneous Confidence Band Approach for Comparison of COVID-19 Case Counts.
The outbreak of the novel coronavirus (COVID-19) was declared to be a global emergency in January of 2020, and everyday life throughout the world was disrupted. Among many questions about COVID-19 that remain unanswered, it is of interest for society to identify whether there is any significant difference in daily case counts between males and females. The daily case count sequences are correlated due to the nature of a contagious disease, and contain a nonlinear trend owing to several unexpected events, such as vaccinations and the appearance of the delta variant. It is possible that these unexpected events have changed the dynamical system that generates data. The classic t-test is not appropriate to analyze such correlated data with a nonconstant trend. This study applies a simultaneous confidence band approach in an attempt to overcome these difficulties; that is, a simultaneous confidence band for the trend of an autoregressive moving-average time series is constructed using B-spline estimation. The proposed method is applied to the daily case count data of seniors of both genders (at least 60 years old) in the State of Ohio from April 1, 2020 to March 31, 2022, and the result shows that there is a significant difference at the 95% confidence level between the two gender case counts adjusted for the population sizes.
期刊介绍:
Statistics in Biosciences (SIBS) is published three times a year in print and electronic form. It aims at development and application of statistical methods and their interface with other quantitative methods, such as computational and mathematical methods, in biological and life science, health science, and biopharmaceutical and biotechnological science.
SIBS publishes scientific papers and review articles in four sections, with the first two sections as the primary sections. Original Articles publish novel statistical and quantitative methods in biosciences. The Bioscience Case Studies and Practice Articles publish papers that advance statistical practice in biosciences, such as case studies, innovative applications of existing methods that further understanding of subject-matter science, evaluation of existing methods and data sources. Review Articles publish papers that review an area of statistical and quantitative methodology, software, and data sources in biosciences. Commentaries provide perspectives of research topics or policy issues that are of current quantitative interest in biosciences, reactions to an article published in the journal, and scholarly essays. Substantive science is essential in motivating and demonstrating the methodological development and use for an article to be acceptable. Articles published in SIBS share the goal of promoting evidence-based real world practice and policy making through effective and timely interaction and communication of statisticians and quantitative researchers with subject-matter scientists in biosciences.