pirna调控转座因子的群体遗传学理论

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Siddharth S. Tomar, Aurélie Hua-Van, Arnaud Le Rouzic
{"title":"pirna调控转座因子的群体遗传学理论","authors":"Siddharth S. Tomar,&nbsp;Aurélie Hua-Van,&nbsp;Arnaud Le Rouzic","doi":"10.1016/j.tpb.2023.02.001","DOIUrl":null,"url":null,"abstract":"<div><p><span>Transposable elements (TEs) are self-reproducing selfish DNA sequences that can invade the genome of virtually all living species. </span>Population genetics<span> models have shown that TE copy numbers generally reach a limit, either because the transposition rate decreases with the number of copies (transposition regulation) or because TE copies are deleterious, and thus purged by natural selection. Yet, recent empirical discoveries suggest that TE regulation may mostly rely on piRNAs, which require a specific mutational event (the insertion of a TE copy in a piRNA cluster) to be activated — the so-called TE regulation “trap model”. We derived new population genetics models accounting for this trap mechanism, and showed that the resulting equilibria differ substantially from previous expectations based on a transposition–selection equilibrium. We proposed three sub-models, depending on whether or not genomic TE copies and piRNA cluster TE copies are selectively neutral or deleterious, and we provide analytical expressions for maximum and equilibrium copy numbers, as well as cluster frequencies for all of them. In the full neutral model, the equilibrium is achieved when transposition is completely silenced, and this equilibrium does not depend on the transposition rate. When genomic TE copies are deleterious but not cluster TE copies, no long-term equilibrium is possible, and active TEs are eventually eliminated after an active incomplete invasion stage. When all TE copies are deleterious, a transposition–selection equilibrium exists, but the invasion dynamics is not monotonic, and the copy number peaks before decreasing. Mathematical predictions were in good agreement with numerical simulations, except when genetic drift and/or linkage disequilibrium dominates. Overall, the trap-model dynamics appeared to be substantially more stochastic and less repeatable than traditional regulation models.</span></p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A population genetics theory for piRNA-regulated transposable elements\",\"authors\":\"Siddharth S. Tomar,&nbsp;Aurélie Hua-Van,&nbsp;Arnaud Le Rouzic\",\"doi\":\"10.1016/j.tpb.2023.02.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>Transposable elements (TEs) are self-reproducing selfish DNA sequences that can invade the genome of virtually all living species. </span>Population genetics<span> models have shown that TE copy numbers generally reach a limit, either because the transposition rate decreases with the number of copies (transposition regulation) or because TE copies are deleterious, and thus purged by natural selection. Yet, recent empirical discoveries suggest that TE regulation may mostly rely on piRNAs, which require a specific mutational event (the insertion of a TE copy in a piRNA cluster) to be activated — the so-called TE regulation “trap model”. We derived new population genetics models accounting for this trap mechanism, and showed that the resulting equilibria differ substantially from previous expectations based on a transposition–selection equilibrium. We proposed three sub-models, depending on whether or not genomic TE copies and piRNA cluster TE copies are selectively neutral or deleterious, and we provide analytical expressions for maximum and equilibrium copy numbers, as well as cluster frequencies for all of them. In the full neutral model, the equilibrium is achieved when transposition is completely silenced, and this equilibrium does not depend on the transposition rate. When genomic TE copies are deleterious but not cluster TE copies, no long-term equilibrium is possible, and active TEs are eventually eliminated after an active incomplete invasion stage. When all TE copies are deleterious, a transposition–selection equilibrium exists, but the invasion dynamics is not monotonic, and the copy number peaks before decreasing. Mathematical predictions were in good agreement with numerical simulations, except when genetic drift and/or linkage disequilibrium dominates. Overall, the trap-model dynamics appeared to be substantially more stochastic and less repeatable than traditional regulation models.</span></p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0040580923000096\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040580923000096","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

可转座元件(TE)是一种自我繁殖的自私DNA序列,可以入侵几乎所有生物的基因组。群体遗传学模型表明,TE拷贝数通常达到极限,要么是因为转座率随着拷贝数的增加而降低(转座调节),要么是由于TE拷贝是有害的,因此被自然选择清除。然而,最近的经验发现表明,TE调节可能主要依赖于piRNA,这需要激活特定的突变事件(在piRNA簇中插入TE拷贝),即所谓的TE调节“陷阱模型”。我们推导了解释这种陷阱机制的新的群体遗传学模型,并表明由此产生的平衡与以前基于换位-选择平衡的预期有很大不同。我们提出了三个子模型,这取决于基因组TE拷贝和piRNA簇TE拷贝是否是选择性中性或有害的,我们提供了最大拷贝数和平衡拷贝数的分析表达式,以及所有这些的簇频率。在完全中性模型中,当转置完全静音时,达到平衡,并且这种平衡不取决于转置速率。当基因组TE拷贝是有害的,但不是簇TE拷贝时,不可能实现长期平衡,并且活性TE在活性不完全入侵阶段后最终被消除。当所有TE拷贝都是有害的时,存在换位-选择平衡,但入侵动力学不是单调的,拷贝数在减少之前达到峰值。除了遗传漂移和/或连锁不平衡占主导地位外,数学预测与数值模拟非常一致。总体而言,陷阱模型动力学似乎比传统的监管模型更具随机性和可重复性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A population genetics theory for piRNA-regulated transposable elements

Transposable elements (TEs) are self-reproducing selfish DNA sequences that can invade the genome of virtually all living species. Population genetics models have shown that TE copy numbers generally reach a limit, either because the transposition rate decreases with the number of copies (transposition regulation) or because TE copies are deleterious, and thus purged by natural selection. Yet, recent empirical discoveries suggest that TE regulation may mostly rely on piRNAs, which require a specific mutational event (the insertion of a TE copy in a piRNA cluster) to be activated — the so-called TE regulation “trap model”. We derived new population genetics models accounting for this trap mechanism, and showed that the resulting equilibria differ substantially from previous expectations based on a transposition–selection equilibrium. We proposed three sub-models, depending on whether or not genomic TE copies and piRNA cluster TE copies are selectively neutral or deleterious, and we provide analytical expressions for maximum and equilibrium copy numbers, as well as cluster frequencies for all of them. In the full neutral model, the equilibrium is achieved when transposition is completely silenced, and this equilibrium does not depend on the transposition rate. When genomic TE copies are deleterious but not cluster TE copies, no long-term equilibrium is possible, and active TEs are eventually eliminated after an active incomplete invasion stage. When all TE copies are deleterious, a transposition–selection equilibrium exists, but the invasion dynamics is not monotonic, and the copy number peaks before decreasing. Mathematical predictions were in good agreement with numerical simulations, except when genetic drift and/or linkage disequilibrium dominates. Overall, the trap-model dynamics appeared to be substantially more stochastic and less repeatable than traditional regulation models.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信