从群体编码的角度揭示皮层突触结构的功能多样性。

IF 2.8 4区 医学 Q2 NEUROSCIENCES
Jacob L Yates, Benjamin Scholl
{"title":"从群体编码的角度揭示皮层突触结构的功能多样性。","authors":"Jacob L Yates,&nbsp;Benjamin Scholl","doi":"10.3389/fnsyn.2022.888214","DOIUrl":null,"url":null,"abstract":"<p><p>The synaptic inputs to single cortical neurons exhibit substantial diversity in their sensory-driven activity. What this diversity reflects is unclear, and appears counter-productive in generating selective somatic responses to specific stimuli. One possibility is that this diversity reflects the propagation of information from one neural population to another. To test this possibility, we bridge population coding theory with measurements of synaptic inputs recorded <i>in vivo</i> with two-photon calcium imaging. We construct a probabilistic decoder to estimate the stimulus orientation from the responses of a realistic, hypothetical input population of neurons to compare with synaptic inputs onto individual neurons of ferret primary visual cortex (V1) recorded with two-photon calcium imaging <i>in vivo</i>. We find that optimal decoding requires diverse input weights and provides a straightforward mapping from the decoder weights to excitatory synapses. Analytically derived weights for biologically realistic input populations closely matched the functional heterogeneity of dendritic spines imaged <i>in vivo</i> with two-photon calcium imaging. Our results indicate that synaptic diversity is a necessary component of information transmission and reframes studies of connectivity through the lens of probabilistic population codes. These results suggest that the mapping from synaptic inputs to somatic selectivity may not be directly interpretable without considering input covariance and highlights the importance of population codes in pursuit of the cortical connectome.</p>","PeriodicalId":12650,"journal":{"name":"Frontiers in Synaptic Neuroscience","volume":"14 ","pages":"888214"},"PeriodicalIF":2.8000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9360921/pdf/","citationCount":"2","resultStr":"{\"title\":\"Unraveling Functional Diversity of Cortical Synaptic Architecture Through the Lens of Population Coding.\",\"authors\":\"Jacob L Yates,&nbsp;Benjamin Scholl\",\"doi\":\"10.3389/fnsyn.2022.888214\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The synaptic inputs to single cortical neurons exhibit substantial diversity in their sensory-driven activity. What this diversity reflects is unclear, and appears counter-productive in generating selective somatic responses to specific stimuli. One possibility is that this diversity reflects the propagation of information from one neural population to another. To test this possibility, we bridge population coding theory with measurements of synaptic inputs recorded <i>in vivo</i> with two-photon calcium imaging. We construct a probabilistic decoder to estimate the stimulus orientation from the responses of a realistic, hypothetical input population of neurons to compare with synaptic inputs onto individual neurons of ferret primary visual cortex (V1) recorded with two-photon calcium imaging <i>in vivo</i>. We find that optimal decoding requires diverse input weights and provides a straightforward mapping from the decoder weights to excitatory synapses. Analytically derived weights for biologically realistic input populations closely matched the functional heterogeneity of dendritic spines imaged <i>in vivo</i> with two-photon calcium imaging. Our results indicate that synaptic diversity is a necessary component of information transmission and reframes studies of connectivity through the lens of probabilistic population codes. These results suggest that the mapping from synaptic inputs to somatic selectivity may not be directly interpretable without considering input covariance and highlights the importance of population codes in pursuit of the cortical connectome.</p>\",\"PeriodicalId\":12650,\"journal\":{\"name\":\"Frontiers in Synaptic Neuroscience\",\"volume\":\"14 \",\"pages\":\"888214\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9360921/pdf/\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Synaptic Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3389/fnsyn.2022.888214\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Synaptic Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fnsyn.2022.888214","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 2

摘要

单个皮质神经元的突触输入在其感觉驱动活动中表现出实质性的多样性。这种多样性反映了什么尚不清楚,似乎在产生对特定刺激的选择性体细胞反应方面是适得其反的。一种可能性是,这种多样性反映了信息从一个神经种群到另一个神经种群的传播。为了测试这种可能性,我们将种群编码理论与体内双光子钙成像记录的突触输入测量联系起来。我们构建了一个概率解码器,从真实的、假设的神经元输入群体的反应中估计刺激方向,并与体内双光子钙成像记录的雪貂初级视觉皮层(V1)单个神经元的突触输入进行比较。我们发现最优解码需要不同的输入权值,并提供了从解码器权值到兴奋性突触的直接映射。分析得出的生物真实输入种群的权重与双光子钙成像在体内成像的树突棘的功能异质性密切匹配。我们的研究结果表明,突触多样性是信息传递的必要组成部分,并通过概率种群编码重新定义了连接研究。这些结果表明,如果不考虑输入协方差,从突触输入到躯体选择性的映射可能无法直接解释,并强调了种群编码在追求皮层连接组中的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Unraveling Functional Diversity of Cortical Synaptic Architecture Through the Lens of Population Coding.

Unraveling Functional Diversity of Cortical Synaptic Architecture Through the Lens of Population Coding.

Unraveling Functional Diversity of Cortical Synaptic Architecture Through the Lens of Population Coding.

Unraveling Functional Diversity of Cortical Synaptic Architecture Through the Lens of Population Coding.

The synaptic inputs to single cortical neurons exhibit substantial diversity in their sensory-driven activity. What this diversity reflects is unclear, and appears counter-productive in generating selective somatic responses to specific stimuli. One possibility is that this diversity reflects the propagation of information from one neural population to another. To test this possibility, we bridge population coding theory with measurements of synaptic inputs recorded in vivo with two-photon calcium imaging. We construct a probabilistic decoder to estimate the stimulus orientation from the responses of a realistic, hypothetical input population of neurons to compare with synaptic inputs onto individual neurons of ferret primary visual cortex (V1) recorded with two-photon calcium imaging in vivo. We find that optimal decoding requires diverse input weights and provides a straightforward mapping from the decoder weights to excitatory synapses. Analytically derived weights for biologically realistic input populations closely matched the functional heterogeneity of dendritic spines imaged in vivo with two-photon calcium imaging. Our results indicate that synaptic diversity is a necessary component of information transmission and reframes studies of connectivity through the lens of probabilistic population codes. These results suggest that the mapping from synaptic inputs to somatic selectivity may not be directly interpretable without considering input covariance and highlights the importance of population codes in pursuit of the cortical connectome.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.10
自引率
2.70%
发文量
74
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信