{"title":"新生儿串联质谱筛查中脂肪酸氧化障碍的临床和基因分析。","authors":"Xiaoxia Wang, Haining Fang","doi":"10.2147/PGPM.S402760","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>To investigate the clinical and gene mutation characteristics of fatty acid oxidative metabolic diseases found in neonatal screening.</p><p><strong>Methods: </strong>A retrospective analysis was performed on 29,948 neonatal blood tandem mass spectrometry screening samples from January 2018 to December 2021 in our neonatal screening centre. For screening positive, recall review is still suspected of fatty acid oxidation metabolic disorders in children as soon as possible to improve the genetic metabolic disease-related gene detection package to confirm the diagnosis. All diagnosed children were followed up to the deadline.</p><p><strong>Results: </strong>Among 29,948 neonates screened by tandem mass spectrometry, 14 cases of primary carnitine deficiency, six cases of short-chain acyl coenzyme A dehydrogenase deficiency, two cases of carnitine palmitoyltransferase-I deficiency and one case of multiple acyl coenzyme A dehydrogenase deficiency were recalled. Except for two cases of multiple acyl coenzyme A dehydrogenase deficiency that exhibited [manifestations], the other 21 cases were diagnosed pre-symptomatically. Eight mutations of <i>SLC22A</i>5 gene were detected, including c.51C>G, c.403G>A, c.506G>A, c.1400C>G, c.1085C>T, c.706C>T, c.1540G>C and c.338G>A. Compound heterozygous mutation of <i>CPT1A</i> gene c.2201T>C, c.1318G>A, c.2246G>A, c.2125G>A and ETFA gene c.365G>A and c.699_701delGTT were detected, and new mutation sites were found.</p><p><strong>Conclusion: </strong>Neonatal tandem mass spectrometry screening is an effective method for identifying fatty acid oxidative metabolic diseases, but it should be combined with urine gas chromatography-mass spectrometry and gene sequencing technology. Our findings enrich the gene mutation profile of fatty acid oxidative metabolic disease and provide evidence for genetic counselling and prenatal diagnosis in families.</p>","PeriodicalId":56015,"journal":{"name":"Pharmacogenomics & Personalized Medicine","volume":"16 ","pages":"577-587"},"PeriodicalIF":1.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/d1/c0/pgpm-16-577.PMC10254624.pdf","citationCount":"0","resultStr":"{\"title\":\"Clinical and Gene Analysis of Fatty Acid Oxidation Disorders Found in Neonatal Tandem Mass Spectrometry Screening.\",\"authors\":\"Xiaoxia Wang, Haining Fang\",\"doi\":\"10.2147/PGPM.S402760\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>To investigate the clinical and gene mutation characteristics of fatty acid oxidative metabolic diseases found in neonatal screening.</p><p><strong>Methods: </strong>A retrospective analysis was performed on 29,948 neonatal blood tandem mass spectrometry screening samples from January 2018 to December 2021 in our neonatal screening centre. For screening positive, recall review is still suspected of fatty acid oxidation metabolic disorders in children as soon as possible to improve the genetic metabolic disease-related gene detection package to confirm the diagnosis. All diagnosed children were followed up to the deadline.</p><p><strong>Results: </strong>Among 29,948 neonates screened by tandem mass spectrometry, 14 cases of primary carnitine deficiency, six cases of short-chain acyl coenzyme A dehydrogenase deficiency, two cases of carnitine palmitoyltransferase-I deficiency and one case of multiple acyl coenzyme A dehydrogenase deficiency were recalled. Except for two cases of multiple acyl coenzyme A dehydrogenase deficiency that exhibited [manifestations], the other 21 cases were diagnosed pre-symptomatically. Eight mutations of <i>SLC22A</i>5 gene were detected, including c.51C>G, c.403G>A, c.506G>A, c.1400C>G, c.1085C>T, c.706C>T, c.1540G>C and c.338G>A. Compound heterozygous mutation of <i>CPT1A</i> gene c.2201T>C, c.1318G>A, c.2246G>A, c.2125G>A and ETFA gene c.365G>A and c.699_701delGTT were detected, and new mutation sites were found.</p><p><strong>Conclusion: </strong>Neonatal tandem mass spectrometry screening is an effective method for identifying fatty acid oxidative metabolic diseases, but it should be combined with urine gas chromatography-mass spectrometry and gene sequencing technology. Our findings enrich the gene mutation profile of fatty acid oxidative metabolic disease and provide evidence for genetic counselling and prenatal diagnosis in families.</p>\",\"PeriodicalId\":56015,\"journal\":{\"name\":\"Pharmacogenomics & Personalized Medicine\",\"volume\":\"16 \",\"pages\":\"577-587\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/d1/c0/pgpm-16-577.PMC10254624.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmacogenomics & Personalized Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2147/PGPM.S402760\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmacogenomics & Personalized Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/PGPM.S402760","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Clinical and Gene Analysis of Fatty Acid Oxidation Disorders Found in Neonatal Tandem Mass Spectrometry Screening.
Objective: To investigate the clinical and gene mutation characteristics of fatty acid oxidative metabolic diseases found in neonatal screening.
Methods: A retrospective analysis was performed on 29,948 neonatal blood tandem mass spectrometry screening samples from January 2018 to December 2021 in our neonatal screening centre. For screening positive, recall review is still suspected of fatty acid oxidation metabolic disorders in children as soon as possible to improve the genetic metabolic disease-related gene detection package to confirm the diagnosis. All diagnosed children were followed up to the deadline.
Results: Among 29,948 neonates screened by tandem mass spectrometry, 14 cases of primary carnitine deficiency, six cases of short-chain acyl coenzyme A dehydrogenase deficiency, two cases of carnitine palmitoyltransferase-I deficiency and one case of multiple acyl coenzyme A dehydrogenase deficiency were recalled. Except for two cases of multiple acyl coenzyme A dehydrogenase deficiency that exhibited [manifestations], the other 21 cases were diagnosed pre-symptomatically. Eight mutations of SLC22A5 gene were detected, including c.51C>G, c.403G>A, c.506G>A, c.1400C>G, c.1085C>T, c.706C>T, c.1540G>C and c.338G>A. Compound heterozygous mutation of CPT1A gene c.2201T>C, c.1318G>A, c.2246G>A, c.2125G>A and ETFA gene c.365G>A and c.699_701delGTT were detected, and new mutation sites were found.
Conclusion: Neonatal tandem mass spectrometry screening is an effective method for identifying fatty acid oxidative metabolic diseases, but it should be combined with urine gas chromatography-mass spectrometry and gene sequencing technology. Our findings enrich the gene mutation profile of fatty acid oxidative metabolic disease and provide evidence for genetic counselling and prenatal diagnosis in families.
期刊介绍:
Pharmacogenomics and Personalized Medicine is an international, peer-reviewed, open-access journal characterizing the influence of genotype on pharmacology leading to the development of personalized treatment programs and individualized drug selection for improved safety, efficacy and sustainability.
In particular, emphasis will be given to:
Genomic and proteomic profiling
Genetics and drug metabolism
Targeted drug identification and discovery
Optimizing drug selection & dosage based on patient''s genetic profile
Drug related morbidity & mortality intervention
Advanced disease screening and targeted therapeutic intervention
Genetic based vaccine development
Patient satisfaction and preference
Health economic evaluations
Practical and organizational issues in the development and implementation of personalized medicine programs.