利用数据包络分析评估COVID-19对器官移植服务绩效的影响。

IF 2.3 3区 医学 Q2 HEALTH POLICY & SERVICES
Márcia N F Manoel, Sérgio P Santos, Carla A F Amado
{"title":"利用数据包络分析评估COVID-19对器官移植服务绩效的影响。","authors":"Márcia N F Manoel,&nbsp;Sérgio P Santos,&nbsp;Carla A F Amado","doi":"10.1007/s10729-023-09637-4","DOIUrl":null,"url":null,"abstract":"<p><p>Organ transplant is one of the best options for many medical conditions, and in many cases, it may be the only treatment option. Recent evidence suggests, however, that the COVID-19 pandemic might have detrimentally affected the provision of this type of healthcare services. The main purpose of this article is to use Data Envelopment Analysis and the Malmquist Index to assess the impact that the pandemic caused by the novel coronavirus SARS-CoV-2 had on the provision of solid organ transplant services. To this purpose, we use three complementary models, each focusing on specific aspects of the organ donation and transplantation process, and data from Brazil, which has one of the most extensive public organ transplant programs in the world. Using data from 17 States plus the Federal District, the results of our analysis show a significant drop in the performance of the services in terms of the organ donation and transplantation process from 2018 to 2020, but the results also indicate that not all aspects of the process and States were equally affected. Furthermore, by using different models, this research also allows us to gain a more comprehensive and informative assessment of the performance of the States in delivering this type of service and identify opportunities for reciprocal learning, expanding our knowledge on this important issue and offering opportunities for further research.</p>","PeriodicalId":12903,"journal":{"name":"Health Care Management Science","volume":"26 2","pages":"217-237"},"PeriodicalIF":2.3000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10130802/pdf/","citationCount":"0","resultStr":"{\"title\":\"Assessing the impact of COVID-19 on the performance of organ transplant services using data envelopment analysis.\",\"authors\":\"Márcia N F Manoel,&nbsp;Sérgio P Santos,&nbsp;Carla A F Amado\",\"doi\":\"10.1007/s10729-023-09637-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Organ transplant is one of the best options for many medical conditions, and in many cases, it may be the only treatment option. Recent evidence suggests, however, that the COVID-19 pandemic might have detrimentally affected the provision of this type of healthcare services. The main purpose of this article is to use Data Envelopment Analysis and the Malmquist Index to assess the impact that the pandemic caused by the novel coronavirus SARS-CoV-2 had on the provision of solid organ transplant services. To this purpose, we use three complementary models, each focusing on specific aspects of the organ donation and transplantation process, and data from Brazil, which has one of the most extensive public organ transplant programs in the world. Using data from 17 States plus the Federal District, the results of our analysis show a significant drop in the performance of the services in terms of the organ donation and transplantation process from 2018 to 2020, but the results also indicate that not all aspects of the process and States were equally affected. Furthermore, by using different models, this research also allows us to gain a more comprehensive and informative assessment of the performance of the States in delivering this type of service and identify opportunities for reciprocal learning, expanding our knowledge on this important issue and offering opportunities for further research.</p>\",\"PeriodicalId\":12903,\"journal\":{\"name\":\"Health Care Management Science\",\"volume\":\"26 2\",\"pages\":\"217-237\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10130802/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Health Care Management Science\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10729-023-09637-4\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"HEALTH POLICY & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Health Care Management Science","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10729-023-09637-4","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"HEALTH POLICY & SERVICES","Score":null,"Total":0}
引用次数: 0

摘要

器官移植是许多疾病的最佳选择之一,在许多情况下,它可能是唯一的治疗选择。然而,最近的证据表明,2019冠状病毒病大流行可能对这类医疗服务的提供产生了不利影响。本文的主要目的是利用数据包络分析和马尔姆奎斯特指数来评估新型冠状病毒SARS-CoV-2引起的大流行对实体器官移植服务提供的影响。为此,我们使用了三个互补的模型,每个模型都侧重于器官捐赠和移植过程的特定方面,并使用了巴西的数据,巴西拥有世界上最广泛的公共器官移植计划之一。使用来自17个州和联邦区的数据,我们的分析结果显示,从2018年到2020年,器官捐赠和移植过程的服务绩效显著下降,但结果也表明,并非该过程和各州的所有方面都受到同样的影响。此外,通过使用不同的模型,本研究还使我们能够对各国在提供此类服务方面的表现进行更全面、更翔实的评估,并确定相互学习的机会,从而扩大我们对这一重要问题的认识,并为进一步研究提供机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Assessing the impact of COVID-19 on the performance of organ transplant services using data envelopment analysis.

Assessing the impact of COVID-19 on the performance of organ transplant services using data envelopment analysis.

Assessing the impact of COVID-19 on the performance of organ transplant services using data envelopment analysis.

Assessing the impact of COVID-19 on the performance of organ transplant services using data envelopment analysis.

Organ transplant is one of the best options for many medical conditions, and in many cases, it may be the only treatment option. Recent evidence suggests, however, that the COVID-19 pandemic might have detrimentally affected the provision of this type of healthcare services. The main purpose of this article is to use Data Envelopment Analysis and the Malmquist Index to assess the impact that the pandemic caused by the novel coronavirus SARS-CoV-2 had on the provision of solid organ transplant services. To this purpose, we use three complementary models, each focusing on specific aspects of the organ donation and transplantation process, and data from Brazil, which has one of the most extensive public organ transplant programs in the world. Using data from 17 States plus the Federal District, the results of our analysis show a significant drop in the performance of the services in terms of the organ donation and transplantation process from 2018 to 2020, but the results also indicate that not all aspects of the process and States were equally affected. Furthermore, by using different models, this research also allows us to gain a more comprehensive and informative assessment of the performance of the States in delivering this type of service and identify opportunities for reciprocal learning, expanding our knowledge on this important issue and offering opportunities for further research.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Health Care Management Science
Health Care Management Science HEALTH POLICY & SERVICES-
CiteScore
7.20
自引率
5.60%
发文量
40
期刊介绍: Health Care Management Science publishes papers dealing with health care delivery, health care management, and health care policy. Papers should have a decision focus and make use of quantitative methods including management science, operations research, analytics, machine learning, and other emerging areas. Articles must clearly articulate the relevance and the realized or potential impact of the work. Applied research will be considered and is of particular interest if there is evidence that it was implemented or informed a decision-making process. Papers describing routine applications of known methods are discouraged. Authors are encouraged to disclose all data and analyses thereof, and to provide computational code when appropriate. Editorial statements for the individual departments are provided below. Health Care Analytics Departmental Editors: Margrét Bjarnadóttir, University of Maryland Nan Kong, Purdue University With the explosion in computing power and available data, we have seen fast changes in the analytics applied in the healthcare space. The Health Care Analytics department welcomes papers applying a broad range of analytical approaches, including those rooted in machine learning, survival analysis, and complex event analysis, that allow healthcare professionals to find opportunities for improvement in health system management, patient engagement, spending, and diagnosis. We especially encourage papers that combine predictive and prescriptive analytics to improve decision making and health care outcomes. The contribution of papers can be across multiple dimensions including new methodology, novel modeling techniques and health care through real-world cohort studies. Papers that are methodologically focused need in addition to show practical relevance. Similarly papers that are application focused should clearly demonstrate improvements over the status quo and available approaches by applying rigorous analytics. Health Care Operations Management Departmental Editors: Nilay Tanik Argon, University of North Carolina at Chapel Hill Bob Batt, University of Wisconsin The department invites high-quality papers on the design, control, and analysis of operations at healthcare systems. We seek papers on classical operations management issues (such as scheduling, routing, queuing, transportation, patient flow, and quality) as well as non-traditional problems driven by everchanging healthcare practice. Empirical, experimental, and analytical (model based) methodologies are all welcome. Papers may draw theory from across disciplines, and should provide insight into improving operations from the perspective of patients, service providers, organizations (municipal/government/industry), and/or society. Health Care Management Science Practice Departmental Editor: Vikram Tiwari, Vanderbilt University Medical Center The department seeks research from academicians and practitioners that highlights Management Science based solutions directly relevant to the practice of healthcare. Relevance is judged by the impact on practice, as well as the degree to which researchers engaged with practitioners in understanding the problem context and in developing the solution. Validity, that is, the extent to which the results presented do or would apply in practice is a key evaluation criterion. In addition to meeting the journal’s standards of originality and substantial contribution to knowledge creation, research that can be replicated in other organizations is encouraged. Papers describing unsuccessful applied research projects may be considered if there are generalizable learning points addressing why the project was unsuccessful. Health Care Productivity Analysis Departmental Editor: Jonas Schreyögg, University of Hamburg The department invites papers with rigorous methods and significant impact for policy and practice. Papers typically apply theory and techniques to measuring productivity in health care organizations and systems. The journal welcomes state-of-the-art parametric as well as non-parametric techniques such as data envelopment analysis, stochastic frontier analysis or partial frontier analysis. The contribution of papers can be manifold including new methodology, novel combination of existing methods or application of existing methods to new contexts. Empirical papers should produce results generalizable beyond a selected set of health care organizations. All papers should include a section on implications for management or policy to enhance productivity. Public Health Policy and Medical Decision Making Departmental Editors: Ebru Bish, University of Alabama Julie L. Higle, University of Southern California The department invites high quality papers that use data-driven methods to address important problems that arise in public health policy and medical decision-making domains. We welcome submissions that develop and apply mathematical and computational models in support of data-driven and model-based analyses for these problems. The Public Health Policy and Medical Decision-Making Department is particularly interested in papers that: Study high-impact problems involving health policy, treatment planning and design, and clinical applications; Develop original data-driven models, including those that integrate disease modeling with screening and/or treatment guidelines; Use model-based analyses as decision making-tools to identify optimal solutions, insights, recommendations. Articles must clearly articulate the relevance of the work to decision and/or policy makers and the potential impact on patients and/or society. Papers will include articulated contributions within the methodological domain, which may include modeling, analytical, or computational methodologies. Emerging Topics Departmental Editor: Alec Morton, University of Strathclyde Emerging Topics will handle papers which use innovative quantitative methods to shed light on frontier issues in healthcare management and policy. Such papers may deal with analytic challenges arising from novel health technologies or new organizational forms. Papers falling under this department may also deal with the analysis of new forms of data which are increasingly captured as health systems become more and more digitized.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信