{"title":"低维一致可整集补上的格林函数估计。","authors":"Guy David, Joseph Feneuil, Svitlana Mayboroda","doi":"10.1007/s00208-022-02379-8","DOIUrl":null,"url":null,"abstract":"<p><p>It has been recently established in David and Mayboroda (Approximation of green functions and domains with uniformly rectifiable boundaries of all dimensions. arXiv:2010.09793) that on uniformly rectifiable sets the Green function is almost affine in the weak sense, and moreover, in some scenarios such Green function estimates are equivalent to the uniform rectifiability of a set. The present paper tackles a strong analogue of these results, starting with the \"flagship\" degenerate operators on sets with lower dimensional boundaries. We consider the elliptic operators <math> <mrow><msub><mi>L</mi> <mrow><mi>β</mi> <mo>,</mo> <mi>γ</mi></mrow> </msub> <mo>=</mo> <mo>-</mo> <mtext>div</mtext> <msup><mi>D</mi> <mrow><mi>d</mi> <mo>+</mo> <mn>1</mn> <mo>+</mo> <mi>γ</mi> <mo>-</mo> <mi>n</mi></mrow> </msup> <mi>∇</mi></mrow> </math> associated to a domain <math><mrow><mi>Ω</mi> <mo>⊂</mo> <msup><mrow><mi>R</mi></mrow> <mi>n</mi></msup> </mrow> </math> with a uniformly rectifiable boundary <math><mi>Γ</mi></math> of dimension <math><mrow><mi>d</mi> <mo><</mo> <mi>n</mi> <mo>-</mo> <mn>1</mn></mrow> </math> , the now usual distance to the boundary <math><mrow><mi>D</mi> <mo>=</mo> <msub><mi>D</mi> <mi>β</mi></msub> </mrow> </math> given by <math> <mrow><msub><mi>D</mi> <mi>β</mi></msub> <msup><mrow><mo>(</mo> <mi>X</mi> <mo>)</mo></mrow> <mrow><mo>-</mo> <mi>β</mi></mrow> </msup> <mo>=</mo> <msub><mo>∫</mo> <mi>Γ</mi></msub> <msup><mrow><mo>|</mo> <mi>X</mi> <mo>-</mo> <mi>y</mi> <mo>|</mo></mrow> <mrow><mo>-</mo> <mi>d</mi> <mo>-</mo> <mi>β</mi></mrow> </msup> <mi>d</mi> <mi>σ</mi> <mrow><mo>(</mo> <mi>y</mi> <mo>)</mo></mrow> </mrow> </math> for <math><mrow><mi>X</mi> <mo>∈</mo> <mi>Ω</mi></mrow> </math> , where <math><mrow><mi>β</mi> <mo>></mo> <mn>0</mn></mrow> </math> and <math><mrow><mi>γ</mi> <mo>∈</mo> <mo>(</mo> <mo>-</mo> <mn>1</mn> <mo>,</mo> <mn>1</mn> <mo>)</mo></mrow> </math> . In this paper we show that the Green function <i>G</i> for <math><msub><mi>L</mi> <mrow><mi>β</mi> <mo>,</mo> <mi>γ</mi></mrow> </msub> </math> , with pole at infinity, is well approximated by multiples of <math><msup><mi>D</mi> <mrow><mn>1</mn> <mo>-</mo> <mi>γ</mi></mrow> </msup> </math> , in the sense that the function <math> <mrow><mrow><mo>|</mo></mrow> <mi>D</mi> <mi>∇</mi> <mrow><mo>(</mo></mrow> <mo>ln</mo> <mrow><mo>(</mo></mrow> <mfrac><mi>G</mi> <msup><mi>D</mi> <mrow><mn>1</mn> <mo>-</mo> <mi>γ</mi></mrow> </msup> </mfrac> <mrow><mo>)</mo></mrow> <mrow><mo>)</mo></mrow> <msup><mrow><mo>|</mo></mrow> <mn>2</mn></msup> </mrow> </math> satisfies a Carleson measure estimate on <math><mi>Ω</mi></math> . We underline that the strong and the weak results are different in nature and, of course, at the level of the proofs: the latter extensively used compactness arguments, while the present paper relies on some intricate integration by parts and the properties of the \"magical\" distance function from David et al. (Duke Math J, to appear).</p>","PeriodicalId":18304,"journal":{"name":"Mathematische Annalen","volume":"385 3-4","pages":"1797-1821"},"PeriodicalIF":1.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10042934/pdf/","citationCount":"7","resultStr":"{\"title\":\"Green function estimates on complements of low-dimensional uniformly rectifiable sets.\",\"authors\":\"Guy David, Joseph Feneuil, Svitlana Mayboroda\",\"doi\":\"10.1007/s00208-022-02379-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>It has been recently established in David and Mayboroda (Approximation of green functions and domains with uniformly rectifiable boundaries of all dimensions. arXiv:2010.09793) that on uniformly rectifiable sets the Green function is almost affine in the weak sense, and moreover, in some scenarios such Green function estimates are equivalent to the uniform rectifiability of a set. The present paper tackles a strong analogue of these results, starting with the \\\"flagship\\\" degenerate operators on sets with lower dimensional boundaries. We consider the elliptic operators <math> <mrow><msub><mi>L</mi> <mrow><mi>β</mi> <mo>,</mo> <mi>γ</mi></mrow> </msub> <mo>=</mo> <mo>-</mo> <mtext>div</mtext> <msup><mi>D</mi> <mrow><mi>d</mi> <mo>+</mo> <mn>1</mn> <mo>+</mo> <mi>γ</mi> <mo>-</mo> <mi>n</mi></mrow> </msup> <mi>∇</mi></mrow> </math> associated to a domain <math><mrow><mi>Ω</mi> <mo>⊂</mo> <msup><mrow><mi>R</mi></mrow> <mi>n</mi></msup> </mrow> </math> with a uniformly rectifiable boundary <math><mi>Γ</mi></math> of dimension <math><mrow><mi>d</mi> <mo><</mo> <mi>n</mi> <mo>-</mo> <mn>1</mn></mrow> </math> , the now usual distance to the boundary <math><mrow><mi>D</mi> <mo>=</mo> <msub><mi>D</mi> <mi>β</mi></msub> </mrow> </math> given by <math> <mrow><msub><mi>D</mi> <mi>β</mi></msub> <msup><mrow><mo>(</mo> <mi>X</mi> <mo>)</mo></mrow> <mrow><mo>-</mo> <mi>β</mi></mrow> </msup> <mo>=</mo> <msub><mo>∫</mo> <mi>Γ</mi></msub> <msup><mrow><mo>|</mo> <mi>X</mi> <mo>-</mo> <mi>y</mi> <mo>|</mo></mrow> <mrow><mo>-</mo> <mi>d</mi> <mo>-</mo> <mi>β</mi></mrow> </msup> <mi>d</mi> <mi>σ</mi> <mrow><mo>(</mo> <mi>y</mi> <mo>)</mo></mrow> </mrow> </math> for <math><mrow><mi>X</mi> <mo>∈</mo> <mi>Ω</mi></mrow> </math> , where <math><mrow><mi>β</mi> <mo>></mo> <mn>0</mn></mrow> </math> and <math><mrow><mi>γ</mi> <mo>∈</mo> <mo>(</mo> <mo>-</mo> <mn>1</mn> <mo>,</mo> <mn>1</mn> <mo>)</mo></mrow> </math> . In this paper we show that the Green function <i>G</i> for <math><msub><mi>L</mi> <mrow><mi>β</mi> <mo>,</mo> <mi>γ</mi></mrow> </msub> </math> , with pole at infinity, is well approximated by multiples of <math><msup><mi>D</mi> <mrow><mn>1</mn> <mo>-</mo> <mi>γ</mi></mrow> </msup> </math> , in the sense that the function <math> <mrow><mrow><mo>|</mo></mrow> <mi>D</mi> <mi>∇</mi> <mrow><mo>(</mo></mrow> <mo>ln</mo> <mrow><mo>(</mo></mrow> <mfrac><mi>G</mi> <msup><mi>D</mi> <mrow><mn>1</mn> <mo>-</mo> <mi>γ</mi></mrow> </msup> </mfrac> <mrow><mo>)</mo></mrow> <mrow><mo>)</mo></mrow> <msup><mrow><mo>|</mo></mrow> <mn>2</mn></msup> </mrow> </math> satisfies a Carleson measure estimate on <math><mi>Ω</mi></math> . We underline that the strong and the weak results are different in nature and, of course, at the level of the proofs: the latter extensively used compactness arguments, while the present paper relies on some intricate integration by parts and the properties of the \\\"magical\\\" distance function from David et al. (Duke Math J, to appear).</p>\",\"PeriodicalId\":18304,\"journal\":{\"name\":\"Mathematische Annalen\",\"volume\":\"385 3-4\",\"pages\":\"1797-1821\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10042934/pdf/\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Annalen\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00208-022-02379-8\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Annalen","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00208-022-02379-8","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 7
摘要
它最近在David和Mayboroda(所有维度的统一可整流边界的green函数和域的逼近)中被建立。arXiv:2010.09793),在一致可整流集合上,Green函数在弱意义上几乎是仿射的,并且在某些情况下,这样的Green函数估计等价于集合的一致可整流性。本文从具有较低维边界的集合上的“旗舰”退化算子开始,处理这些结果的一个强模拟。我们考虑椭圆运营商Lβ,γ= - div D D + 1 +γ- n∇相关域Ω⊂Γ均匀可矫正的边界的R n维D n - 1,现在通常距离边界D =β由Dβ(X) -β=∫ΓX - y | | - D - Dσβ为X (y)∈Ω,在β> 0和γ∈(- 1,- 1)。在本文中,我们证明了极点在无穷远处的L β, γ的格林函数G可以用d1 - γ的倍数很好地逼近,即函数| D∇(ln (g1 - γ)) | 2满足Ω上的Carleson测度估计。我们强调强结果和弱结果在本质上是不同的,当然,在证明的层面上是不同的:后者广泛使用紧性论证,而本文依赖于一些复杂的部分积分和David等人(Duke Math J,即将出现)的“神奇”距离函数的性质。
Green function estimates on complements of low-dimensional uniformly rectifiable sets.
It has been recently established in David and Mayboroda (Approximation of green functions and domains with uniformly rectifiable boundaries of all dimensions. arXiv:2010.09793) that on uniformly rectifiable sets the Green function is almost affine in the weak sense, and moreover, in some scenarios such Green function estimates are equivalent to the uniform rectifiability of a set. The present paper tackles a strong analogue of these results, starting with the "flagship" degenerate operators on sets with lower dimensional boundaries. We consider the elliptic operators associated to a domain with a uniformly rectifiable boundary of dimension , the now usual distance to the boundary given by for , where and . In this paper we show that the Green function G for , with pole at infinity, is well approximated by multiples of , in the sense that the function satisfies a Carleson measure estimate on . We underline that the strong and the weak results are different in nature and, of course, at the level of the proofs: the latter extensively used compactness arguments, while the present paper relies on some intricate integration by parts and the properties of the "magical" distance function from David et al. (Duke Math J, to appear).
期刊介绍:
Begründet 1868 durch Alfred Clebsch und Carl Neumann. Fortgeführt durch Felix Klein, David Hilbert, Otto Blumenthal, Erich Hecke, Heinrich Behnke, Hans Grauert, Heinz Bauer, Herbert Amann, Jean-Pierre Bourguignon, Wolfgang Lück und Nigel Hitchin.
The journal Mathematische Annalen was founded in 1868 by Alfred Clebsch and Carl Neumann. It was continued by Felix Klein, David Hilbert, Otto Blumenthal, Erich Hecke, Heinrich Behnke, Hans Grauert, Heinz Bauer, Herbert Amann, Jean-Pierre Bourguigon, Wolfgang Lück and Nigel Hitchin.
Since 1868 the name Mathematische Annalen stands for a long tradition and high quality in the publication of mathematical research articles. Mathematische Annalen is designed not as a specialized journal but covers a wide spectrum of modern mathematics.