{"title":"l -抗坏血酸可通过靶向HMGB1改善缺氧-再氧化引起的心肌微血管内皮细胞损伤。","authors":"Zhanshuai Zhang, Shaoqiang Qin, Yaling Wang, Huiqing Liang, Rui Wang, Fangjiang Li","doi":"10.1007/s10863-023-09962-x","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, we intend to explore the potential function of l-ascorbic acid in hypoxia-reoxygenation (H/R)-induced damage of CMECs and its related molecular mechanism. With different concentrations of l-ascorbic acid treatment, the proliferation, migration, inflammation and autophagy of cardiac microvascular endothelial cells (CMECs) were determined by several biological experiments. Si-HMGB1 transfection was used to reduce HMGB1 expression and to detect the function of HMGB1 in H/R-induced damage of CMECs. Under H/R condition, the proliferation and migration abilities of CMECs were reduced, and the inflammation and autophagy of CMECs were increased. Whereas, after l-ascorbic acid treatment, the reduction in the proliferation and migration of CMECs, as well as the increase in the inflammation and autophagy of CMECs induced by H/R were reversely altered. HMGB1 was confirmed as a specific target of l-ascorbic acid, and si-HMGB1 treatment strengthened the beneficial effect of l-ascorbic acid on H/R-induced damage of CMECs, followed by further reduction in the proliferation and migration abilities of CMECs, as well as the increase in the inflammation and autophagy of CMECs. Few studies have reported the function of l-ascorbic acid in myocardial ischemia on CMECs, but our experimental data showed that l-ascorbic acid treatment could ameliorate the H/R-induced damage of CMECs by regulating HMGB1 expression.</p>","PeriodicalId":15080,"journal":{"name":"Journal of Bioenergetics and Biomembranes","volume":"55 2","pages":"115-122"},"PeriodicalIF":2.9000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"L-ascorbic acid could ameliorate the damage of myocardial microvascular endothelial cell caused by hypoxia-reoxygenation via targeting HMGB1.\",\"authors\":\"Zhanshuai Zhang, Shaoqiang Qin, Yaling Wang, Huiqing Liang, Rui Wang, Fangjiang Li\",\"doi\":\"10.1007/s10863-023-09962-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this study, we intend to explore the potential function of l-ascorbic acid in hypoxia-reoxygenation (H/R)-induced damage of CMECs and its related molecular mechanism. With different concentrations of l-ascorbic acid treatment, the proliferation, migration, inflammation and autophagy of cardiac microvascular endothelial cells (CMECs) were determined by several biological experiments. Si-HMGB1 transfection was used to reduce HMGB1 expression and to detect the function of HMGB1 in H/R-induced damage of CMECs. Under H/R condition, the proliferation and migration abilities of CMECs were reduced, and the inflammation and autophagy of CMECs were increased. Whereas, after l-ascorbic acid treatment, the reduction in the proliferation and migration of CMECs, as well as the increase in the inflammation and autophagy of CMECs induced by H/R were reversely altered. HMGB1 was confirmed as a specific target of l-ascorbic acid, and si-HMGB1 treatment strengthened the beneficial effect of l-ascorbic acid on H/R-induced damage of CMECs, followed by further reduction in the proliferation and migration abilities of CMECs, as well as the increase in the inflammation and autophagy of CMECs. Few studies have reported the function of l-ascorbic acid in myocardial ischemia on CMECs, but our experimental data showed that l-ascorbic acid treatment could ameliorate the H/R-induced damage of CMECs by regulating HMGB1 expression.</p>\",\"PeriodicalId\":15080,\"journal\":{\"name\":\"Journal of Bioenergetics and Biomembranes\",\"volume\":\"55 2\",\"pages\":\"115-122\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Bioenergetics and Biomembranes\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s10863-023-09962-x\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bioenergetics and Biomembranes","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10863-023-09962-x","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
L-ascorbic acid could ameliorate the damage of myocardial microvascular endothelial cell caused by hypoxia-reoxygenation via targeting HMGB1.
In this study, we intend to explore the potential function of l-ascorbic acid in hypoxia-reoxygenation (H/R)-induced damage of CMECs and its related molecular mechanism. With different concentrations of l-ascorbic acid treatment, the proliferation, migration, inflammation and autophagy of cardiac microvascular endothelial cells (CMECs) were determined by several biological experiments. Si-HMGB1 transfection was used to reduce HMGB1 expression and to detect the function of HMGB1 in H/R-induced damage of CMECs. Under H/R condition, the proliferation and migration abilities of CMECs were reduced, and the inflammation and autophagy of CMECs were increased. Whereas, after l-ascorbic acid treatment, the reduction in the proliferation and migration of CMECs, as well as the increase in the inflammation and autophagy of CMECs induced by H/R were reversely altered. HMGB1 was confirmed as a specific target of l-ascorbic acid, and si-HMGB1 treatment strengthened the beneficial effect of l-ascorbic acid on H/R-induced damage of CMECs, followed by further reduction in the proliferation and migration abilities of CMECs, as well as the increase in the inflammation and autophagy of CMECs. Few studies have reported the function of l-ascorbic acid in myocardial ischemia on CMECs, but our experimental data showed that l-ascorbic acid treatment could ameliorate the H/R-induced damage of CMECs by regulating HMGB1 expression.
期刊介绍:
The Journal of Bioenergetics and Biomembranes is an international journal devoted to the publication of original research that contributes to fundamental knowledge in the areas of bioenergetics, biomembranes, and transport, including oxidative phosphorylation, photosynthesis, muscle contraction, as well as cellular and systemic metabolism. The timely research in this international journal benefits biophysicists, membrane biologists, cell biologists, biochemists, molecular biologists, physiologists, endocrinologists, and bio-organic chemists.