Ye S Lee, Jennifer E Klomp, Clint A Stalnecker, Craig M Goodwin, Yanzhe Gao, Gaith N Droby, Cyrus Vaziri, Kirsten L Bryant, Channing J Der, Adrienne D Cox
{"title":"VCP/p97是一种DNA损伤反应和蛋白质稳态的多效性蛋白调节剂,是kras突变型胰腺癌的潜在治疗靶点。","authors":"Ye S Lee, Jennifer E Klomp, Clint A Stalnecker, Craig M Goodwin, Yanzhe Gao, Gaith N Droby, Cyrus Vaziri, Kirsten L Bryant, Channing J Der, Adrienne D Cox","doi":"10.18632/genesandcancer.231","DOIUrl":null,"url":null,"abstract":"<p><p>We and others have recently shown that proteins involved in the DNA damage response (DDR) are critical for <i>KRAS</i>-mutant pancreatic ductal adenocarcinoma (PDAC) cell growth <i>in vitro</i>. However, the CRISPR-Cas9 library that enabled us to identify these key proteins had limited representation of DDR-related genes. To further investigate the DDR in this context, we performed a comprehensive, DDR-focused CRISPR-Cas9 loss-of-function screen. This screen identified valosin-containing protein (<i>VCP</i>) as an essential gene in <i>KRAS</i>-mutant PDAC cell lines. We observed that genetic and pharmacologic inhibition of VCP limited cell growth and induced apoptotic death. Addressing the basis for VCP-dependent growth, we first evaluated the contribution of VCP to the DDR and found that loss of VCP resulted in accumulation of DNA double-strand breaks. We next addressed its role in proteostasis and found that loss of VCP caused accumulation of polyubiquitinated proteins. We also found that loss of VCP increased autophagy. Therefore, we reasoned that inhibiting both VCP and autophagy could be an effective combination. Accordingly, we found that VCP inhibition synergized with the autophagy inhibitor chloroquine. We conclude that concurrent targeting of autophagy can enhance the efficacy of VCP inhibitors in <i>KRAS</i>-mutant PDAC.</p>","PeriodicalId":38987,"journal":{"name":"Genes and Cancer","volume":"14 ","pages":"30-49"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10010283/pdf/","citationCount":"0","resultStr":"{\"title\":\"VCP/p97, a pleiotropic protein regulator of the DNA damage response and proteostasis, is a potential therapeutic target in <i>KRAS</i>-mutant pancreatic cancer.\",\"authors\":\"Ye S Lee, Jennifer E Klomp, Clint A Stalnecker, Craig M Goodwin, Yanzhe Gao, Gaith N Droby, Cyrus Vaziri, Kirsten L Bryant, Channing J Der, Adrienne D Cox\",\"doi\":\"10.18632/genesandcancer.231\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We and others have recently shown that proteins involved in the DNA damage response (DDR) are critical for <i>KRAS</i>-mutant pancreatic ductal adenocarcinoma (PDAC) cell growth <i>in vitro</i>. However, the CRISPR-Cas9 library that enabled us to identify these key proteins had limited representation of DDR-related genes. To further investigate the DDR in this context, we performed a comprehensive, DDR-focused CRISPR-Cas9 loss-of-function screen. This screen identified valosin-containing protein (<i>VCP</i>) as an essential gene in <i>KRAS</i>-mutant PDAC cell lines. We observed that genetic and pharmacologic inhibition of VCP limited cell growth and induced apoptotic death. Addressing the basis for VCP-dependent growth, we first evaluated the contribution of VCP to the DDR and found that loss of VCP resulted in accumulation of DNA double-strand breaks. We next addressed its role in proteostasis and found that loss of VCP caused accumulation of polyubiquitinated proteins. We also found that loss of VCP increased autophagy. Therefore, we reasoned that inhibiting both VCP and autophagy could be an effective combination. Accordingly, we found that VCP inhibition synergized with the autophagy inhibitor chloroquine. We conclude that concurrent targeting of autophagy can enhance the efficacy of VCP inhibitors in <i>KRAS</i>-mutant PDAC.</p>\",\"PeriodicalId\":38987,\"journal\":{\"name\":\"Genes and Cancer\",\"volume\":\"14 \",\"pages\":\"30-49\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10010283/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genes and Cancer\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18632/genesandcancer.231\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genes and Cancer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18632/genesandcancer.231","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
摘要
我们和其他人最近表明,参与DNA损伤反应(DDR)的蛋白质对kras突变型胰腺导管腺癌(PDAC)细胞的体外生长至关重要。然而,使我们能够识别这些关键蛋白的CRISPR-Cas9文库对ddr相关基因的表达有限。为了在这种情况下进一步研究DDR,我们进行了一项全面的、以DDR为重点的CRISPR-Cas9功能丧失筛查。该筛选鉴定了含valosin-containing protein (VCP)是kras突变型PDAC细胞系的必需基因。我们观察到VCP的遗传和药理学抑制作用限制了细胞生长并诱导凋亡。针对VCP依赖性生长的基础,我们首先评估了VCP对DDR的贡献,并发现VCP的缺失导致DNA双链断裂的积累。接下来,我们研究了VCP在蛋白质停滞中的作用,并发现VCP的丧失导致了多泛素化蛋白的积累。我们还发现VCP的丧失增加了自噬。因此,我们认为抑制VCP和自噬可能是有效的组合。因此,我们发现VCP抑制与自噬抑制剂氯喹具有协同作用。我们得出结论,同时靶向自噬可以增强VCP抑制剂在kras突变型PDAC中的疗效。
VCP/p97, a pleiotropic protein regulator of the DNA damage response and proteostasis, is a potential therapeutic target in KRAS-mutant pancreatic cancer.
We and others have recently shown that proteins involved in the DNA damage response (DDR) are critical for KRAS-mutant pancreatic ductal adenocarcinoma (PDAC) cell growth in vitro. However, the CRISPR-Cas9 library that enabled us to identify these key proteins had limited representation of DDR-related genes. To further investigate the DDR in this context, we performed a comprehensive, DDR-focused CRISPR-Cas9 loss-of-function screen. This screen identified valosin-containing protein (VCP) as an essential gene in KRAS-mutant PDAC cell lines. We observed that genetic and pharmacologic inhibition of VCP limited cell growth and induced apoptotic death. Addressing the basis for VCP-dependent growth, we first evaluated the contribution of VCP to the DDR and found that loss of VCP resulted in accumulation of DNA double-strand breaks. We next addressed its role in proteostasis and found that loss of VCP caused accumulation of polyubiquitinated proteins. We also found that loss of VCP increased autophagy. Therefore, we reasoned that inhibiting both VCP and autophagy could be an effective combination. Accordingly, we found that VCP inhibition synergized with the autophagy inhibitor chloroquine. We conclude that concurrent targeting of autophagy can enhance the efficacy of VCP inhibitors in KRAS-mutant PDAC.