复杂性类R的完备性和区域普遍性。

IF 0.6 3区 数学 Q4 COMPUTER SCIENCE, THEORY & METHODS
Discrete & Computational Geometry Pub Date : 2023-01-01 Epub Date: 2022-05-18 DOI:10.1007/s00454-022-00381-0
Michael Gene Dobbins, Linda Kleist, Tillmann Miltzow, Paweł Rzążewski
{"title":"复杂性类R的完备性和区域普遍性。","authors":"Michael Gene Dobbins,&nbsp;Linda Kleist,&nbsp;Tillmann Miltzow,&nbsp;Paweł Rzążewski","doi":"10.1007/s00454-022-00381-0","DOIUrl":null,"url":null,"abstract":"<p><p>Exhibiting a deep connection between purely geometric problems and real algebra, the complexity class <math><mrow><mo>∃</mo><mi>R</mi></mrow></math> plays a crucial role in the study of geometric problems. Sometimes <math><mrow><mo>∃</mo><mi>R</mi></mrow></math> is referred to as the 'real analog' of NP. While NP is a class of computational problems that deals with existentially quantified <i>boolean</i> variables, <math><mrow><mo>∃</mo><mi>R</mi></mrow></math> deals with existentially quantified <i>real</i> variables. In analogy to <math><msubsup><mi>Π</mi><mn>2</mn><mi>p</mi></msubsup></math> and <math><msubsup><mi>Σ</mi><mn>2</mn><mi>p</mi></msubsup></math> in the famous polynomial hierarchy, we study the complexity classes <math><mrow><mo>∀</mo><mo>∃</mo><mi>R</mi></mrow></math> and <math><mrow><mo>∃</mo><mo>∀</mo><mi>R</mi></mrow></math> with <i>real</i> variables. Our main interest is the Area Universality problem, where we are given a plane graph <i>G</i>, and ask if for each assignment of areas to the inner faces of <i>G</i>, there exists a straight-line drawing of <i>G</i> realizing the assigned areas. We conjecture that Area Universality is <math><mrow><mo>∀</mo><mo>∃</mo><mi>R</mi></mrow></math>-complete and support this conjecture by proving <math><mrow><mo>∃</mo><mi>R</mi></mrow></math>- and <math><mrow><mo>∀</mo><mo>∃</mo><mi>R</mi></mrow></math>-completeness of two variants of Area Universality. To this end, we introduce tools to prove <math><mrow><mo>∀</mo><mo>∃</mo><mi>R</mi></mrow></math>-hardness and membership. Finally, we present geometric problems as candidates for <math><mrow><mo>∀</mo><mo>∃</mo><mi>R</mi></mrow></math>-complete problems. These problems have connections to the concepts of imprecision, robustness, and extendability.</p>","PeriodicalId":50574,"journal":{"name":"Discrete & Computational Geometry","volume":"70 1","pages":"154-188"},"PeriodicalIF":0.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10244296/pdf/","citationCount":"1","resultStr":"{\"title\":\"<ArticleTitle xmlns:ns0=\\\"http://www.w3.org/1998/Math/MathML\\\">Completeness for the Complexity Class <ns0:math><ns0:mrow><ns0:mo>∀</ns0:mo><ns0:mo>∃</ns0:mo><ns0:mi>R</ns0:mi></ns0:mrow></ns0:math> and Area-Universality.\",\"authors\":\"Michael Gene Dobbins,&nbsp;Linda Kleist,&nbsp;Tillmann Miltzow,&nbsp;Paweł Rzążewski\",\"doi\":\"10.1007/s00454-022-00381-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Exhibiting a deep connection between purely geometric problems and real algebra, the complexity class <math><mrow><mo>∃</mo><mi>R</mi></mrow></math> plays a crucial role in the study of geometric problems. Sometimes <math><mrow><mo>∃</mo><mi>R</mi></mrow></math> is referred to as the 'real analog' of NP. While NP is a class of computational problems that deals with existentially quantified <i>boolean</i> variables, <math><mrow><mo>∃</mo><mi>R</mi></mrow></math> deals with existentially quantified <i>real</i> variables. In analogy to <math><msubsup><mi>Π</mi><mn>2</mn><mi>p</mi></msubsup></math> and <math><msubsup><mi>Σ</mi><mn>2</mn><mi>p</mi></msubsup></math> in the famous polynomial hierarchy, we study the complexity classes <math><mrow><mo>∀</mo><mo>∃</mo><mi>R</mi></mrow></math> and <math><mrow><mo>∃</mo><mo>∀</mo><mi>R</mi></mrow></math> with <i>real</i> variables. Our main interest is the Area Universality problem, where we are given a plane graph <i>G</i>, and ask if for each assignment of areas to the inner faces of <i>G</i>, there exists a straight-line drawing of <i>G</i> realizing the assigned areas. We conjecture that Area Universality is <math><mrow><mo>∀</mo><mo>∃</mo><mi>R</mi></mrow></math>-complete and support this conjecture by proving <math><mrow><mo>∃</mo><mi>R</mi></mrow></math>- and <math><mrow><mo>∀</mo><mo>∃</mo><mi>R</mi></mrow></math>-completeness of two variants of Area Universality. To this end, we introduce tools to prove <math><mrow><mo>∀</mo><mo>∃</mo><mi>R</mi></mrow></math>-hardness and membership. Finally, we present geometric problems as candidates for <math><mrow><mo>∀</mo><mo>∃</mo><mi>R</mi></mrow></math>-complete problems. These problems have connections to the concepts of imprecision, robustness, and extendability.</p>\",\"PeriodicalId\":50574,\"journal\":{\"name\":\"Discrete & Computational Geometry\",\"volume\":\"70 1\",\"pages\":\"154-188\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10244296/pdf/\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete & Computational Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00454-022-00381-0\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/5/18 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete & Computational Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00454-022-00381-0","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/5/18 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 1

摘要

复杂性类∃R表现出纯几何问题和实代数之间的深刻联系,在几何问题的研究中起着至关重要的作用。有时∃R被称为NP的“真实模拟物”。NP是一类处理存在量化布尔变量的计算问题,而R处理存在量化实变量。类似于著名多项式层次中的π2p和∑2p,我们研究了具有实变量的复杂度类∀R和∃R。我们的主要兴趣是面积普遍性问题,在这里我们得到了一个平面图G,并询问对于G的内表面的每一个面积分配,是否存在G的直线图来实现所分配的面积。我们猜想区域普遍性是R完备的,并通过证明区域普遍性的两个变体的R完备和R完备来支持这一猜想。为此,我们介绍了证明R硬度和隶属度的工具。最后,我们提出几何问题作为R完全问题的候选者。这些问题与不精确性、鲁棒性和可扩展性的概念有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

<ArticleTitle xmlns:ns0="http://www.w3.org/1998/Math/MathML">Completeness for the Complexity Class <ns0:math><ns0:mrow><ns0:mo>∀</ns0:mo><ns0:mo>∃</ns0:mo><ns0:mi>R</ns0:mi></ns0:mrow></ns0:math> and Area-Universality.

<ArticleTitle xmlns:ns0="http://www.w3.org/1998/Math/MathML">Completeness for the Complexity Class <ns0:math><ns0:mrow><ns0:mo>∀</ns0:mo><ns0:mo>∃</ns0:mo><ns0:mi>R</ns0:mi></ns0:mrow></ns0:math> and Area-Universality.

<ArticleTitle xmlns:ns0="http://www.w3.org/1998/Math/MathML">Completeness for the Complexity Class <ns0:math><ns0:mrow><ns0:mo>∀</ns0:mo><ns0:mo>∃</ns0:mo><ns0:mi>R</ns0:mi></ns0:mrow></ns0:math> and Area-Universality.

Completeness for the Complexity Class R and Area-Universality.

Exhibiting a deep connection between purely geometric problems and real algebra, the complexity class R plays a crucial role in the study of geometric problems. Sometimes R is referred to as the 'real analog' of NP. While NP is a class of computational problems that deals with existentially quantified boolean variables, R deals with existentially quantified real variables. In analogy to Π2p and Σ2p in the famous polynomial hierarchy, we study the complexity classes R and R with real variables. Our main interest is the Area Universality problem, where we are given a plane graph G, and ask if for each assignment of areas to the inner faces of G, there exists a straight-line drawing of G realizing the assigned areas. We conjecture that Area Universality is R-complete and support this conjecture by proving R- and R-completeness of two variants of Area Universality. To this end, we introduce tools to prove R-hardness and membership. Finally, we present geometric problems as candidates for R-complete problems. These problems have connections to the concepts of imprecision, robustness, and extendability.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete & Computational Geometry
Discrete & Computational Geometry 数学-计算机:理论方法
CiteScore
1.80
自引率
12.50%
发文量
99
审稿时长
6-12 weeks
期刊介绍: Discrete & Computational Geometry (DCG) is an international journal of mathematics and computer science, covering a broad range of topics in which geometry plays a fundamental role. It publishes papers on such topics as configurations and arrangements, spatial subdivision, packing, covering, and tiling, geometric complexity, polytopes, point location, geometric probability, geometric range searching, combinatorial and computational topology, probabilistic techniques in computational geometry, geometric graphs, geometry of numbers, and motion planning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信