Martijn A Schenkel, Jean-Christophe Billeter, Leo W Beukeboom, Ido Pen
{"title":"遗传性别决定机制沿环境梯度的分化演化。","authors":"Martijn A Schenkel, Jean-Christophe Billeter, Leo W Beukeboom, Ido Pen","doi":"10.1093/evlett/qrad011","DOIUrl":null,"url":null,"abstract":"<p><p>Sex determination (SD) is a crucial developmental process, but its molecular underpinnings are very diverse, both between and within species. SD mechanisms have traditionally been categorized as either genetic (GSD) or environmental (ESD), depending on the type of cue that triggers sexual differentiation. However, mixed systems, with both genetic and environmental components, are more prevalent than previously thought. Here, we show theoretically that environmental effects on expression levels of genes within SD regulatory mechanisms can easily trigger within-species evolutionary divergence of SD mechanisms. This may lead to the stable coexistence of multiple SD mechanisms and to spatial variation in the occurrence of different SD mechanisms along environmental gradients. We applied the model to the SD system of the housefly, a global species with world-wide latitudinal clines in the frequencies of different SD systems, and found that it correctly predicted these clines if specific genes in the housefly SD system were assumed to have temperature-dependent expression levels. We conclude that environmental sensitivity of gene regulatory networks may play an important role in diversification of SD mechanisms.</p>","PeriodicalId":48629,"journal":{"name":"Evolution Letters","volume":"7 3","pages":"132-147"},"PeriodicalIF":3.4000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10210438/pdf/","citationCount":"2","resultStr":"{\"title\":\"Divergent evolution of genetic sex determination mechanisms along environmental gradients.\",\"authors\":\"Martijn A Schenkel, Jean-Christophe Billeter, Leo W Beukeboom, Ido Pen\",\"doi\":\"10.1093/evlett/qrad011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Sex determination (SD) is a crucial developmental process, but its molecular underpinnings are very diverse, both between and within species. SD mechanisms have traditionally been categorized as either genetic (GSD) or environmental (ESD), depending on the type of cue that triggers sexual differentiation. However, mixed systems, with both genetic and environmental components, are more prevalent than previously thought. Here, we show theoretically that environmental effects on expression levels of genes within SD regulatory mechanisms can easily trigger within-species evolutionary divergence of SD mechanisms. This may lead to the stable coexistence of multiple SD mechanisms and to spatial variation in the occurrence of different SD mechanisms along environmental gradients. We applied the model to the SD system of the housefly, a global species with world-wide latitudinal clines in the frequencies of different SD systems, and found that it correctly predicted these clines if specific genes in the housefly SD system were assumed to have temperature-dependent expression levels. We conclude that environmental sensitivity of gene regulatory networks may play an important role in diversification of SD mechanisms.</p>\",\"PeriodicalId\":48629,\"journal\":{\"name\":\"Evolution Letters\",\"volume\":\"7 3\",\"pages\":\"132-147\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10210438/pdf/\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Evolution Letters\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/evlett/qrad011\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"EVOLUTIONARY BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolution Letters","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/evlett/qrad011","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"EVOLUTIONARY BIOLOGY","Score":null,"Total":0}
Divergent evolution of genetic sex determination mechanisms along environmental gradients.
Sex determination (SD) is a crucial developmental process, but its molecular underpinnings are very diverse, both between and within species. SD mechanisms have traditionally been categorized as either genetic (GSD) or environmental (ESD), depending on the type of cue that triggers sexual differentiation. However, mixed systems, with both genetic and environmental components, are more prevalent than previously thought. Here, we show theoretically that environmental effects on expression levels of genes within SD regulatory mechanisms can easily trigger within-species evolutionary divergence of SD mechanisms. This may lead to the stable coexistence of multiple SD mechanisms and to spatial variation in the occurrence of different SD mechanisms along environmental gradients. We applied the model to the SD system of the housefly, a global species with world-wide latitudinal clines in the frequencies of different SD systems, and found that it correctly predicted these clines if specific genes in the housefly SD system were assumed to have temperature-dependent expression levels. We conclude that environmental sensitivity of gene regulatory networks may play an important role in diversification of SD mechanisms.
期刊介绍:
Evolution Letters publishes cutting-edge new research in all areas of Evolutionary Biology.
Available exclusively online, and entirely open access, Evolution Letters consists of Letters - original pieces of research which form the bulk of papers - and Comments and Opinion - a forum for highlighting timely new research ideas for the evolutionary community.