{"title":"揭示生长素、油菜素内酯和赤霉素在早期荫蔽诱导下胚轴伸长中的动态整合。","authors":"Sha Huang, Chuanwei Yang, Lin Li","doi":"10.1007/s43657-022-00044-3","DOIUrl":null,"url":null,"abstract":"<p><p>For shade-intolerant plants, a reduction in the red/far-red (R:FR) light ratio signals the close proximity of competitors and triggers shade-avoidance syndrome (SAS). Auxin, brassinosteroid, gibberellin and some transcriptional regulators have been reported to regulate shade-induced hypocotyl elongation. However, little is understood regarding the coordination of these multiple regulatory pathways. Here, combining time-lapse growth rates and transcriptomic data, we demonstrate that auxin and brassinosteroid affect two phases of shade-induced rapid growth, whereas gibberellin mainly contributes to the second rapid growth phase. PHYTOCHROME-INTERACTING FACTOR 7 (PIF7) acts earlier than other PIFs. PIF4 and PIF5 modulate the second rapid growth phase. LONG HYPOCOTYL IN FAR-RED 1 (HFR1) and PIF3-LIKE 1 (PIL1) modulate two rapid growth phases. Our results reveal that hormonal and transcriptional regulatory programs act together to coordinate dynamic hypocotyl changes in an immediate response to a shade signal and provide a novel understanding of growth kinetics in a changing environment.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s43657-022-00044-3.</p>","PeriodicalId":74435,"journal":{"name":"Phenomics (Cham, Switzerland)","volume":"2 2","pages":"119-129"},"PeriodicalIF":3.7000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9590496/pdf/43657_2022_Article_44.pdf","citationCount":"1","resultStr":"{\"title\":\"Unraveling the Dynamic Integration of Auxin, Brassinosteroid and Gibberellin in Early Shade-Induced Hypocotyl Elongation.\",\"authors\":\"Sha Huang, Chuanwei Yang, Lin Li\",\"doi\":\"10.1007/s43657-022-00044-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>For shade-intolerant plants, a reduction in the red/far-red (R:FR) light ratio signals the close proximity of competitors and triggers shade-avoidance syndrome (SAS). Auxin, brassinosteroid, gibberellin and some transcriptional regulators have been reported to regulate shade-induced hypocotyl elongation. However, little is understood regarding the coordination of these multiple regulatory pathways. Here, combining time-lapse growth rates and transcriptomic data, we demonstrate that auxin and brassinosteroid affect two phases of shade-induced rapid growth, whereas gibberellin mainly contributes to the second rapid growth phase. PHYTOCHROME-INTERACTING FACTOR 7 (PIF7) acts earlier than other PIFs. PIF4 and PIF5 modulate the second rapid growth phase. LONG HYPOCOTYL IN FAR-RED 1 (HFR1) and PIF3-LIKE 1 (PIL1) modulate two rapid growth phases. Our results reveal that hormonal and transcriptional regulatory programs act together to coordinate dynamic hypocotyl changes in an immediate response to a shade signal and provide a novel understanding of growth kinetics in a changing environment.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s43657-022-00044-3.</p>\",\"PeriodicalId\":74435,\"journal\":{\"name\":\"Phenomics (Cham, Switzerland)\",\"volume\":\"2 2\",\"pages\":\"119-129\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2022-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9590496/pdf/43657_2022_Article_44.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Phenomics (Cham, Switzerland)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s43657-022-00044-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Phenomics (Cham, Switzerland)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s43657-022-00044-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Unraveling the Dynamic Integration of Auxin, Brassinosteroid and Gibberellin in Early Shade-Induced Hypocotyl Elongation.
For shade-intolerant plants, a reduction in the red/far-red (R:FR) light ratio signals the close proximity of competitors and triggers shade-avoidance syndrome (SAS). Auxin, brassinosteroid, gibberellin and some transcriptional regulators have been reported to regulate shade-induced hypocotyl elongation. However, little is understood regarding the coordination of these multiple regulatory pathways. Here, combining time-lapse growth rates and transcriptomic data, we demonstrate that auxin and brassinosteroid affect two phases of shade-induced rapid growth, whereas gibberellin mainly contributes to the second rapid growth phase. PHYTOCHROME-INTERACTING FACTOR 7 (PIF7) acts earlier than other PIFs. PIF4 and PIF5 modulate the second rapid growth phase. LONG HYPOCOTYL IN FAR-RED 1 (HFR1) and PIF3-LIKE 1 (PIL1) modulate two rapid growth phases. Our results reveal that hormonal and transcriptional regulatory programs act together to coordinate dynamic hypocotyl changes in an immediate response to a shade signal and provide a novel understanding of growth kinetics in a changing environment.
Supplementary information: The online version contains supplementary material available at 10.1007/s43657-022-00044-3.