基于网络药理学和实验验证的青蒿水溶性提取物治疗阿尔茨海默病的机制、分子靶点

IF 4.8 2区 医学 Q1 INTEGRATIVE & COMPLEMENTARY MEDICINE
Wen-Shu Zhou, Marta Silva, Chao Yang, Shuai Li, Yi-Tian Chen, Wen-Hua Zheng
{"title":"基于网络药理学和实验验证的青蒿水溶性提取物治疗阿尔茨海默病的机制、分子靶点","authors":"Wen-Shu Zhou,&nbsp;Marta Silva,&nbsp;Chao Yang,&nbsp;Shuai Li,&nbsp;Yi-Tian Chen,&nbsp;Wen-Hua Zheng","doi":"10.1142/S0192415X23500295","DOIUrl":null,"url":null,"abstract":"<p><p>Oxidative stress is an important contributor to the pathogenesis of Alzheimer's disease (AD). The overproduction of reactive oxygen species observed in AD patients results in the loss of mitochondrial function, altered metal ion homeostasis, lipopolysaccharide metabolism disorder, reduced anti-oxidant defense, increased release of inflammatory factors, and the aggravation and accumulation of amyloid-beta and tau hyper-phosphorylation, which directly cause synaptic and neuronal loss and lead to cognitive dysfunction. Thus, oxidative stress proves to be a fundamental part of AD development and progression, suggesting the potential benefits of anti-oxidant-based therapies for AD. In this study, we found that a water-soluble extract of <i>Artemisia annua</i> (<i>WSEAA</i>), a traditional Chinese herbal medicine, has a strong anti-oxidant function. We also found that <i>WSEAA</i> is able to improve the cognitive function of 3xTg AD mice. However, the mechanisms and molecular targets underlying <i>WSEAA</i> action are still not known. In order to uncover the potential molecular mechanisms involved, we used a combination of network pharmacology and different experimental approaches. Obtained results revealed key genes (such as AKT1, BCL2, IL-6, TNF-[Formula: see text] and BAX) and signaling pathways (like PI3K-AKT and BCL2/BAX) are closely associated with the biological processes responding to oxidative stress. Further verification of the survival/anti-oxidant effects of <i>WSEAA in vitro</i> and <i>in vivo</i> showed that the extract has anti-oxidatant/neuronal survival action against H<sub>2</sub>O<sub>2</sub>-induced damage, and is thus able to prevent the cognitive decline and pathological changes of 3xTg transgenic (3xTg) mice via the regulation of key target-genes and pathways, such as PI3K-AKT and BCL2/BAX, related to survival/apoptosis. Our findings strongly indicate the potential of <i>WSEAA</i> for the prevention and treatment of AD.</p>","PeriodicalId":50814,"journal":{"name":"American Journal of Chinese Medicine","volume":"51 3","pages":"595-622"},"PeriodicalIF":4.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanism and Molecular Targets of a Water-Soluble Extract of <i>Artemisia annua</i> on the Treatment of Alzheimer's Disease Based on Network Pharmacology and Experimental Validation.\",\"authors\":\"Wen-Shu Zhou,&nbsp;Marta Silva,&nbsp;Chao Yang,&nbsp;Shuai Li,&nbsp;Yi-Tian Chen,&nbsp;Wen-Hua Zheng\",\"doi\":\"10.1142/S0192415X23500295\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Oxidative stress is an important contributor to the pathogenesis of Alzheimer's disease (AD). The overproduction of reactive oxygen species observed in AD patients results in the loss of mitochondrial function, altered metal ion homeostasis, lipopolysaccharide metabolism disorder, reduced anti-oxidant defense, increased release of inflammatory factors, and the aggravation and accumulation of amyloid-beta and tau hyper-phosphorylation, which directly cause synaptic and neuronal loss and lead to cognitive dysfunction. Thus, oxidative stress proves to be a fundamental part of AD development and progression, suggesting the potential benefits of anti-oxidant-based therapies for AD. In this study, we found that a water-soluble extract of <i>Artemisia annua</i> (<i>WSEAA</i>), a traditional Chinese herbal medicine, has a strong anti-oxidant function. We also found that <i>WSEAA</i> is able to improve the cognitive function of 3xTg AD mice. However, the mechanisms and molecular targets underlying <i>WSEAA</i> action are still not known. In order to uncover the potential molecular mechanisms involved, we used a combination of network pharmacology and different experimental approaches. Obtained results revealed key genes (such as AKT1, BCL2, IL-6, TNF-[Formula: see text] and BAX) and signaling pathways (like PI3K-AKT and BCL2/BAX) are closely associated with the biological processes responding to oxidative stress. Further verification of the survival/anti-oxidant effects of <i>WSEAA in vitro</i> and <i>in vivo</i> showed that the extract has anti-oxidatant/neuronal survival action against H<sub>2</sub>O<sub>2</sub>-induced damage, and is thus able to prevent the cognitive decline and pathological changes of 3xTg transgenic (3xTg) mice via the regulation of key target-genes and pathways, such as PI3K-AKT and BCL2/BAX, related to survival/apoptosis. Our findings strongly indicate the potential of <i>WSEAA</i> for the prevention and treatment of AD.</p>\",\"PeriodicalId\":50814,\"journal\":{\"name\":\"American Journal of Chinese Medicine\",\"volume\":\"51 3\",\"pages\":\"595-622\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Journal of Chinese Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1142/S0192415X23500295\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"INTEGRATIVE & COMPLEMENTARY MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Chinese Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1142/S0192415X23500295","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INTEGRATIVE & COMPLEMENTARY MEDICINE","Score":null,"Total":0}
引用次数: 0

摘要

氧化应激是阿尔茨海默病(AD)发病的重要因素。AD患者活性氧过量产生导致线粒体功能丧失、金属离子稳态改变、脂多糖代谢紊乱、抗氧化防御降低、炎症因子释放增加、淀粉样蛋白- β和tau超磷酸化加重和积累,直接导致突触和神经元丢失,导致认知功能障碍。因此,氧化应激被证明是阿尔茨海默病发生和进展的一个基本部分,这表明基于抗氧化的阿尔茨海默病治疗的潜在益处。本研究发现中药黄花蒿(Artemisia annua, WSEAA)水溶性提取物具有较强的抗氧化作用。我们还发现WSEAA能够改善3xTg AD小鼠的认知功能。然而,WSEAA作用的机制和分子靶点尚不清楚。为了揭示潜在的分子机制,我们将网络药理学与不同的实验方法相结合。研究结果显示,关键基因(如AKT1、BCL2、IL-6、TNF-和BAX)和信号通路(如PI3K-AKT和BCL2/BAX)与氧化应激的生物过程密切相关。进一步在体外和体内验证WSEAA的存活/抗氧化作用,发现该提取物对h2o2诱导的损伤具有抗氧化/神经元存活作用,从而通过调控与存活/凋亡相关的PI3K-AKT、BCL2/BAX等关键靶基因和通路,预防3xTg转基因小鼠的认知能力下降和病理改变。我们的研究结果强烈表明WSEAA在预防和治疗AD方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mechanism and Molecular Targets of a Water-Soluble Extract of Artemisia annua on the Treatment of Alzheimer's Disease Based on Network Pharmacology and Experimental Validation.

Oxidative stress is an important contributor to the pathogenesis of Alzheimer's disease (AD). The overproduction of reactive oxygen species observed in AD patients results in the loss of mitochondrial function, altered metal ion homeostasis, lipopolysaccharide metabolism disorder, reduced anti-oxidant defense, increased release of inflammatory factors, and the aggravation and accumulation of amyloid-beta and tau hyper-phosphorylation, which directly cause synaptic and neuronal loss and lead to cognitive dysfunction. Thus, oxidative stress proves to be a fundamental part of AD development and progression, suggesting the potential benefits of anti-oxidant-based therapies for AD. In this study, we found that a water-soluble extract of Artemisia annua (WSEAA), a traditional Chinese herbal medicine, has a strong anti-oxidant function. We also found that WSEAA is able to improve the cognitive function of 3xTg AD mice. However, the mechanisms and molecular targets underlying WSEAA action are still not known. In order to uncover the potential molecular mechanisms involved, we used a combination of network pharmacology and different experimental approaches. Obtained results revealed key genes (such as AKT1, BCL2, IL-6, TNF-[Formula: see text] and BAX) and signaling pathways (like PI3K-AKT and BCL2/BAX) are closely associated with the biological processes responding to oxidative stress. Further verification of the survival/anti-oxidant effects of WSEAA in vitro and in vivo showed that the extract has anti-oxidatant/neuronal survival action against H2O2-induced damage, and is thus able to prevent the cognitive decline and pathological changes of 3xTg transgenic (3xTg) mice via the regulation of key target-genes and pathways, such as PI3K-AKT and BCL2/BAX, related to survival/apoptosis. Our findings strongly indicate the potential of WSEAA for the prevention and treatment of AD.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
American Journal of Chinese Medicine
American Journal of Chinese Medicine 医学-全科医学与补充医学
CiteScore
9.90
自引率
8.80%
发文量
159
审稿时长
4.5 months
期刊介绍: The American Journal of Chinese Medicine, which is defined in its broadest sense possible, publishes original articles and essays relating to traditional or ethnomedicine of all cultures. Areas of particular interest include: Basic scientific and clinical research in indigenous medical techniques, therapeutic procedures, medicinal plants, and traditional medical theories and concepts; Multidisciplinary study of medical practice and health care, especially from historical, cultural, public health, and socioeconomic perspectives; International policy implications of comparative studies of medicine in all cultures, including such issues as health in developing countries, affordability and transferability of health-care techniques and concepts; Translating scholarly ancient texts or modern publications on ethnomedicine. The American Journal of Chinese Medicine will consider for publication a broad range of scholarly contributions, including original scientific research papers, review articles, editorial comments, social policy statements, brief news items, bibliographies, research guides, letters to the editors, book reviews, and selected reprints.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信