R J Corbett, L M Ford, N E Raney, J M Grabowski, C W Ernst
{"title":"猪胎儿骨骼肌发育与全基因组DNA低甲基化以及相应的转录物和microRNA表达改变有关。","authors":"R J Corbett, L M Ford, N E Raney, J M Grabowski, C W Ernst","doi":"10.1139/gen-2022-0008","DOIUrl":null,"url":null,"abstract":"<p><p>Fetal myogenesis represents a critical period of porcine skeletal muscle development and requires coordinated expression of thousands of genes. Epigenetic mechanisms, including DNA methylation, drive transcriptional regulation during development; however, these processes are understudied in developing porcine tissues. We performed bisulfite sequencing to assess DNA methylation in pig <i>longissimus dorsi</i> muscle at 41- and 70-days gestation (dg), as well as RNA- and small RNA-sequencing to identify coordinated changes in methylation and expression between myogenic stages. We identified 45 739 differentially methylated regions (DMRs) between stages, and the majority (<i>N</i> = 34 232) were hypomethylated at 70 versus 41 dg. Integration of methylation and transcriptomic data revealed strong associations between differential gene methylation and expression. Differential miRNA methylation was significantly negatively correlated with abundance, and dynamic expression of assayed miRNAs persisted postnatally. Motif analysis revealed significant enrichment of myogenic regulatory factor motifs among hypomethylated regions, suggesting that DNA hypomethylation may function to increase accessibility of muscle-specific transcription factors. We show that developmental DMRs are enriched for GWAS SNPs for muscle- and meat-related traits, demonstrating the potential for epigenetic processes to influence phenotypic diversity. Our results enhance understanding of DNA methylation dynamics of porcine myogenesis and reveal putative <i>cis</i>-regulatory elements governed by epigenetic processes.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Pig fetal skeletal muscle development is associated with genome-wide DNA hypomethylation and corresponding alterations in transcript and microRNA expression.\",\"authors\":\"R J Corbett, L M Ford, N E Raney, J M Grabowski, C W Ernst\",\"doi\":\"10.1139/gen-2022-0008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Fetal myogenesis represents a critical period of porcine skeletal muscle development and requires coordinated expression of thousands of genes. Epigenetic mechanisms, including DNA methylation, drive transcriptional regulation during development; however, these processes are understudied in developing porcine tissues. We performed bisulfite sequencing to assess DNA methylation in pig <i>longissimus dorsi</i> muscle at 41- and 70-days gestation (dg), as well as RNA- and small RNA-sequencing to identify coordinated changes in methylation and expression between myogenic stages. We identified 45 739 differentially methylated regions (DMRs) between stages, and the majority (<i>N</i> = 34 232) were hypomethylated at 70 versus 41 dg. Integration of methylation and transcriptomic data revealed strong associations between differential gene methylation and expression. Differential miRNA methylation was significantly negatively correlated with abundance, and dynamic expression of assayed miRNAs persisted postnatally. Motif analysis revealed significant enrichment of myogenic regulatory factor motifs among hypomethylated regions, suggesting that DNA hypomethylation may function to increase accessibility of muscle-specific transcription factors. We show that developmental DMRs are enriched for GWAS SNPs for muscle- and meat-related traits, demonstrating the potential for epigenetic processes to influence phenotypic diversity. Our results enhance understanding of DNA methylation dynamics of porcine myogenesis and reveal putative <i>cis</i>-regulatory elements governed by epigenetic processes.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1139/gen-2022-0008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1139/gen-2022-0008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Pig fetal skeletal muscle development is associated with genome-wide DNA hypomethylation and corresponding alterations in transcript and microRNA expression.
Fetal myogenesis represents a critical period of porcine skeletal muscle development and requires coordinated expression of thousands of genes. Epigenetic mechanisms, including DNA methylation, drive transcriptional regulation during development; however, these processes are understudied in developing porcine tissues. We performed bisulfite sequencing to assess DNA methylation in pig longissimus dorsi muscle at 41- and 70-days gestation (dg), as well as RNA- and small RNA-sequencing to identify coordinated changes in methylation and expression between myogenic stages. We identified 45 739 differentially methylated regions (DMRs) between stages, and the majority (N = 34 232) were hypomethylated at 70 versus 41 dg. Integration of methylation and transcriptomic data revealed strong associations between differential gene methylation and expression. Differential miRNA methylation was significantly negatively correlated with abundance, and dynamic expression of assayed miRNAs persisted postnatally. Motif analysis revealed significant enrichment of myogenic regulatory factor motifs among hypomethylated regions, suggesting that DNA hypomethylation may function to increase accessibility of muscle-specific transcription factors. We show that developmental DMRs are enriched for GWAS SNPs for muscle- and meat-related traits, demonstrating the potential for epigenetic processes to influence phenotypic diversity. Our results enhance understanding of DNA methylation dynamics of porcine myogenesis and reveal putative cis-regulatory elements governed by epigenetic processes.