{"title":"利用环状结构辅助DNA计算机体外鉴定哈密顿循环","authors":"Deepak Sharma, Manojkumar Ramteke*","doi":"10.1021/acscombsci.9b00150","DOIUrl":null,"url":null,"abstract":"<p >Adleman’s illustration of molecular computing using DNA paved the way toward an entirely new direction of computing (Adleman, L. M. <cite><i>Science</i></cite> <span>1994</span>, <em>266</em>, 1021). The exponential time complex combinatorial problem on a traditional computer turns out to be a separation problem involving a polynomial number of steps in DNA computing experiments. Despite being a promising concept, the implementations of existing DNA computing procedures were restricted only to the smaller size formulations. In this work, we demonstrate a structure assisted DNA computing procedure on a bigger size Hamiltonian cycle problem involving 18 vertices. The developed model involves the formation and digestion of circular structure DNA, iteratively over multiple stages to eliminate the incorrect solutions to the given combinatorial problem. A high accuracy is obtained compared to other structure assisted models, which enable one to solve the bigger size problems.</p>","PeriodicalId":14,"journal":{"name":"ACS Combinatorial Science","volume":"22 5","pages":"225–231"},"PeriodicalIF":3.7840,"publicationDate":"2020-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1021/acscombsci.9b00150","citationCount":"0","resultStr":"{\"title\":\"In Vitro Identification of the Hamiltonian Cycle Using a Circular Structure Assisted DNA Computer\",\"authors\":\"Deepak Sharma, Manojkumar Ramteke*\",\"doi\":\"10.1021/acscombsci.9b00150\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Adleman’s illustration of molecular computing using DNA paved the way toward an entirely new direction of computing (Adleman, L. M. <cite><i>Science</i></cite> <span>1994</span>, <em>266</em>, 1021). The exponential time complex combinatorial problem on a traditional computer turns out to be a separation problem involving a polynomial number of steps in DNA computing experiments. Despite being a promising concept, the implementations of existing DNA computing procedures were restricted only to the smaller size formulations. In this work, we demonstrate a structure assisted DNA computing procedure on a bigger size Hamiltonian cycle problem involving 18 vertices. The developed model involves the formation and digestion of circular structure DNA, iteratively over multiple stages to eliminate the incorrect solutions to the given combinatorial problem. A high accuracy is obtained compared to other structure assisted models, which enable one to solve the bigger size problems.</p>\",\"PeriodicalId\":14,\"journal\":{\"name\":\"ACS Combinatorial Science\",\"volume\":\"22 5\",\"pages\":\"225–231\"},\"PeriodicalIF\":3.7840,\"publicationDate\":\"2020-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1021/acscombsci.9b00150\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Combinatorial Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acscombsci.9b00150\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Chemistry\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Combinatorial Science","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acscombsci.9b00150","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Chemistry","Score":null,"Total":0}
In Vitro Identification of the Hamiltonian Cycle Using a Circular Structure Assisted DNA Computer
Adleman’s illustration of molecular computing using DNA paved the way toward an entirely new direction of computing (Adleman, L. M. Science1994, 266, 1021). The exponential time complex combinatorial problem on a traditional computer turns out to be a separation problem involving a polynomial number of steps in DNA computing experiments. Despite being a promising concept, the implementations of existing DNA computing procedures were restricted only to the smaller size formulations. In this work, we demonstrate a structure assisted DNA computing procedure on a bigger size Hamiltonian cycle problem involving 18 vertices. The developed model involves the formation and digestion of circular structure DNA, iteratively over multiple stages to eliminate the incorrect solutions to the given combinatorial problem. A high accuracy is obtained compared to other structure assisted models, which enable one to solve the bigger size problems.
期刊介绍:
The Journal of Combinatorial Chemistry has been relaunched as ACS Combinatorial Science under the leadership of new Editor-in-Chief M.G. Finn of The Scripps Research Institute. The journal features an expanded scope and will build upon the legacy of the Journal of Combinatorial Chemistry, a highly cited leader in the field.