Nadezhda Fefelova, Suwakon Wongjaikam, Sri Harika Pamarthi, Natthaphat Siri-Angkul, Thomas Comollo, Anshu Kumari, Vivek Garg, Andreas Ivessa, Siriporn C Chattipakorn, Nipon Chattipakorn, Judith K Gwathmey, Lai-Hua Xie
{"title":"线粒体钙单转运蛋白的缺乏通过减少铁下垂来消除铁过载诱导的心脏功能障碍。","authors":"Nadezhda Fefelova, Suwakon Wongjaikam, Sri Harika Pamarthi, Natthaphat Siri-Angkul, Thomas Comollo, Anshu Kumari, Vivek Garg, Andreas Ivessa, Siriporn C Chattipakorn, Nipon Chattipakorn, Judith K Gwathmey, Lai-Hua Xie","doi":"10.1007/s00395-023-00990-7","DOIUrl":null,"url":null,"abstract":"<p><p>Iron overload associated cardiac dysfunction remains a significant clinical challenge whose underlying mechanism(s) have yet to be defined. We aim to evaluate the involvement of the mitochondrial Ca<sup>2+</sup> uniporter (MCU) in cardiac dysfunction and determine its role in the occurrence of ferroptosis. Iron overload was established in control (MCU<sup>fl/fl</sup>) and conditional MCU knockout (MCU<sup>fl/fl-MCM</sup>) mice. LV function was reduced by chronic iron loading in MCU<sup>fl/fl</sup> mice, but not in MCU<sup>fl/fl-MCM</sup> mice. The level of mitochondrial iron and reactive oxygen species were increased and mitochondrial membrane potential and spare respiratory capacity (SRC) were reduced in MCU<sup>fl/fl</sup> cardiomyocytes, but not in MCU<sup>fl/fl-MCM</sup> cardiomyocytes. After iron loading, lipid oxidation levels were increased in MCU<sup>fl/fl</sup><sub>,</sub> but not in MCU<sup>fl/fl-MCM</sup> hearts. Ferrostatin-1, a selective ferroptosis inhibitor, reduced lipid peroxidation and maintained LV function in vivo after chronic iron treatment in MCU<sup>fl/fl</sup> hearts. Isolated cardiomyocytes from MCU<sup>fl/fl</sup> mice demonstrated ferroptosis after acute iron treatment. Moreover, Ca<sup>2+</sup> transient amplitude and cell contractility were both significantly reduced in isolated cardiomyocytes from chronically Fe treated MCU<sup>fl/fl</sup> hearts. However, ferroptosis was not induced in cardiomyocytes from MCU<sup>fl/fl-MCM</sup> hearts nor was there a reduction in Ca<sup>2+</sup> transient amplitude or cardiomyocyte contractility. We conclude that mitochondrial iron uptake is dependent on MCU, which plays an essential role in causing mitochondrial dysfunction and ferroptosis under iron overload conditions in the heart. Cardiac-specific deficiency of MCU prevents the development of ferroptosis and iron overload-induced cardiac dysfunction.</p>","PeriodicalId":8723,"journal":{"name":"Basic Research in Cardiology","volume":"118 1","pages":"21"},"PeriodicalIF":7.5000,"publicationDate":"2023-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10589903/pdf/","citationCount":"0","resultStr":"{\"title\":\"Deficiency of mitochondrial calcium uniporter abrogates iron overload-induced cardiac dysfunction by reducing ferroptosis.\",\"authors\":\"Nadezhda Fefelova, Suwakon Wongjaikam, Sri Harika Pamarthi, Natthaphat Siri-Angkul, Thomas Comollo, Anshu Kumari, Vivek Garg, Andreas Ivessa, Siriporn C Chattipakorn, Nipon Chattipakorn, Judith K Gwathmey, Lai-Hua Xie\",\"doi\":\"10.1007/s00395-023-00990-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Iron overload associated cardiac dysfunction remains a significant clinical challenge whose underlying mechanism(s) have yet to be defined. We aim to evaluate the involvement of the mitochondrial Ca<sup>2+</sup> uniporter (MCU) in cardiac dysfunction and determine its role in the occurrence of ferroptosis. Iron overload was established in control (MCU<sup>fl/fl</sup>) and conditional MCU knockout (MCU<sup>fl/fl-MCM</sup>) mice. LV function was reduced by chronic iron loading in MCU<sup>fl/fl</sup> mice, but not in MCU<sup>fl/fl-MCM</sup> mice. The level of mitochondrial iron and reactive oxygen species were increased and mitochondrial membrane potential and spare respiratory capacity (SRC) were reduced in MCU<sup>fl/fl</sup> cardiomyocytes, but not in MCU<sup>fl/fl-MCM</sup> cardiomyocytes. After iron loading, lipid oxidation levels were increased in MCU<sup>fl/fl</sup><sub>,</sub> but not in MCU<sup>fl/fl-MCM</sup> hearts. Ferrostatin-1, a selective ferroptosis inhibitor, reduced lipid peroxidation and maintained LV function in vivo after chronic iron treatment in MCU<sup>fl/fl</sup> hearts. Isolated cardiomyocytes from MCU<sup>fl/fl</sup> mice demonstrated ferroptosis after acute iron treatment. Moreover, Ca<sup>2+</sup> transient amplitude and cell contractility were both significantly reduced in isolated cardiomyocytes from chronically Fe treated MCU<sup>fl/fl</sup> hearts. However, ferroptosis was not induced in cardiomyocytes from MCU<sup>fl/fl-MCM</sup> hearts nor was there a reduction in Ca<sup>2+</sup> transient amplitude or cardiomyocyte contractility. We conclude that mitochondrial iron uptake is dependent on MCU, which plays an essential role in causing mitochondrial dysfunction and ferroptosis under iron overload conditions in the heart. Cardiac-specific deficiency of MCU prevents the development of ferroptosis and iron overload-induced cardiac dysfunction.</p>\",\"PeriodicalId\":8723,\"journal\":{\"name\":\"Basic Research in Cardiology\",\"volume\":\"118 1\",\"pages\":\"21\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2023-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10589903/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Basic Research in Cardiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00395-023-00990-7\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Basic Research in Cardiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00395-023-00990-7","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
Deficiency of mitochondrial calcium uniporter abrogates iron overload-induced cardiac dysfunction by reducing ferroptosis.
Iron overload associated cardiac dysfunction remains a significant clinical challenge whose underlying mechanism(s) have yet to be defined. We aim to evaluate the involvement of the mitochondrial Ca2+ uniporter (MCU) in cardiac dysfunction and determine its role in the occurrence of ferroptosis. Iron overload was established in control (MCUfl/fl) and conditional MCU knockout (MCUfl/fl-MCM) mice. LV function was reduced by chronic iron loading in MCUfl/fl mice, but not in MCUfl/fl-MCM mice. The level of mitochondrial iron and reactive oxygen species were increased and mitochondrial membrane potential and spare respiratory capacity (SRC) were reduced in MCUfl/fl cardiomyocytes, but not in MCUfl/fl-MCM cardiomyocytes. After iron loading, lipid oxidation levels were increased in MCUfl/fl, but not in MCUfl/fl-MCM hearts. Ferrostatin-1, a selective ferroptosis inhibitor, reduced lipid peroxidation and maintained LV function in vivo after chronic iron treatment in MCUfl/fl hearts. Isolated cardiomyocytes from MCUfl/fl mice demonstrated ferroptosis after acute iron treatment. Moreover, Ca2+ transient amplitude and cell contractility were both significantly reduced in isolated cardiomyocytes from chronically Fe treated MCUfl/fl hearts. However, ferroptosis was not induced in cardiomyocytes from MCUfl/fl-MCM hearts nor was there a reduction in Ca2+ transient amplitude or cardiomyocyte contractility. We conclude that mitochondrial iron uptake is dependent on MCU, which plays an essential role in causing mitochondrial dysfunction and ferroptosis under iron overload conditions in the heart. Cardiac-specific deficiency of MCU prevents the development of ferroptosis and iron overload-induced cardiac dysfunction.
期刊介绍:
Basic Research in Cardiology is an international journal for cardiovascular research. It provides a forum for original and review articles related to experimental cardiology that meet its stringent scientific standards.
Basic Research in Cardiology regularly receives articles from the fields of
- Molecular and Cellular Biology
- Biochemistry
- Biophysics
- Pharmacology
- Physiology and Pathology
- Clinical Cardiology