分子生物学如何提高我们对 axSpA 及其管理的认识?

IF 5.7 2区 医学 Q1 RHEUMATOLOGY
Current Rheumatology Reports Pub Date : 2023-01-01 Epub Date: 2022-10-29 DOI:10.1007/s11926-022-01092-4
Mauro Fatica, Arianna D'Antonio, Lucia Novelli, Paola Triggianese, Paola Conigliaro, Elisabetta Greco, Alberto Bergamini, Carlo Perricone, Maria Sole Chimenti
{"title":"分子生物学如何提高我们对 axSpA 及其管理的认识?","authors":"Mauro Fatica, Arianna D'Antonio, Lucia Novelli, Paola Triggianese, Paola Conigliaro, Elisabetta Greco, Alberto Bergamini, Carlo Perricone, Maria Sole Chimenti","doi":"10.1007/s11926-022-01092-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>This review aims at investigating pathophysiological mechanisms in spondyloarthritis (SpA). Analysis of genetic factors, immunological pathways, and abnormalities of bone metabolism lay the foundations for a better understanding of development of the axial clinical manifestations in patients, allowing physician to choose the most appropriate therapeutic strategy in a more targeted manner.</p><p><strong>Recent findings: </strong>In addition to the contribution of MHC system, findings emerged about the role of non-HLA genes (as ERAP1 and 2, whose inhibition could represent a new therapeutic approach) and of epigenetic mechanisms that regulate the expression of genes involved in SpA pathogenesis. Increasing evidence of bone metabolism abnormalities secondary to the activation of immunological pathways suggests the development of various bone anomalies that are present in axSpA patients. SpA are a group of inflammatory diseases with a multifactorial origin, whose pathogenesis is linked to the genetic predisposition, the action of environmental risk factors, and the activation of immune response. It is now well known how bone metabolism leads to long-term structural damage via increased bone turnover, bone loss and osteoporosis, osteitis, erosions, osteosclerosis, and osteoproliferation. These effects can exist in the same patient over time or even simultaneously. Evidence suggests a cross relationship among innate immunity, autoimmunity, and bone remodeling in SpA, making treatment approach a challenge for rheumatologists. Specifically, treatment targets are consistently increasing as new drugs are upcoming. Both biological and targeted synthetic drugs are promising in terms of their efficacy and safety profile in patients affected by SpA.</p>","PeriodicalId":10761,"journal":{"name":"Current Rheumatology Reports","volume":"25 1","pages":"12-33"},"PeriodicalIF":5.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9825525/pdf/","citationCount":"0","resultStr":"{\"title\":\"How Has Molecular Biology Enhanced Our Undertaking of axSpA and Its Management.\",\"authors\":\"Mauro Fatica, Arianna D'Antonio, Lucia Novelli, Paola Triggianese, Paola Conigliaro, Elisabetta Greco, Alberto Bergamini, Carlo Perricone, Maria Sole Chimenti\",\"doi\":\"10.1007/s11926-022-01092-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>This review aims at investigating pathophysiological mechanisms in spondyloarthritis (SpA). Analysis of genetic factors, immunological pathways, and abnormalities of bone metabolism lay the foundations for a better understanding of development of the axial clinical manifestations in patients, allowing physician to choose the most appropriate therapeutic strategy in a more targeted manner.</p><p><strong>Recent findings: </strong>In addition to the contribution of MHC system, findings emerged about the role of non-HLA genes (as ERAP1 and 2, whose inhibition could represent a new therapeutic approach) and of epigenetic mechanisms that regulate the expression of genes involved in SpA pathogenesis. Increasing evidence of bone metabolism abnormalities secondary to the activation of immunological pathways suggests the development of various bone anomalies that are present in axSpA patients. SpA are a group of inflammatory diseases with a multifactorial origin, whose pathogenesis is linked to the genetic predisposition, the action of environmental risk factors, and the activation of immune response. It is now well known how bone metabolism leads to long-term structural damage via increased bone turnover, bone loss and osteoporosis, osteitis, erosions, osteosclerosis, and osteoproliferation. These effects can exist in the same patient over time or even simultaneously. Evidence suggests a cross relationship among innate immunity, autoimmunity, and bone remodeling in SpA, making treatment approach a challenge for rheumatologists. Specifically, treatment targets are consistently increasing as new drugs are upcoming. Both biological and targeted synthetic drugs are promising in terms of their efficacy and safety profile in patients affected by SpA.</p>\",\"PeriodicalId\":10761,\"journal\":{\"name\":\"Current Rheumatology Reports\",\"volume\":\"25 1\",\"pages\":\"12-33\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9825525/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Rheumatology Reports\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s11926-022-01092-4\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/10/29 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"RHEUMATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Rheumatology Reports","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11926-022-01092-4","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/10/29 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"RHEUMATOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

目的:本综述旨在研究脊柱关节炎(SpA)的病理生理机制。对遗传因素、免疫途径和骨代谢异常的分析为更好地了解患者轴性临床表现的发展奠定了基础,使医生能更有针对性地选择最合适的治疗策略:除了 MHC 系统的作用外,还发现了非 HLA 基因(如 ERAP1 和 2,抑制 ERAP1 和 2 可作为一种新的治疗方法)的作用,以及调节 SpA 发病基因表达的表观遗传机制。越来越多的证据表明,骨代谢异常继发于免疫途径的激活,这表明axSpA 患者存在各种骨异常。SpA 是一组多因素引起的炎症性疾病,其发病机制与遗传易感性、环境危险因素的作用以及免疫反应的激活有关。骨代谢如何通过骨转换增加、骨丢失和骨质疏松症、骨炎、侵蚀、骨硬化和骨质增生导致长期的结构性损伤,这一点现已众所周知。这些影响可能在同一患者身上长期存在,甚至同时存在。有证据表明,SpA 中的先天免疫、自身免疫和骨重塑之间存在交叉关系,这使得治疗方法成为风湿病学家面临的一项挑战。具体来说,随着新药的不断问世,治疗目标也在不断增加。无论是生物药物还是靶向合成药物,在对 SpA 患者的疗效和安全性方面都大有可为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

How Has Molecular Biology Enhanced Our Undertaking of axSpA and Its Management.

How Has Molecular Biology Enhanced Our Undertaking of axSpA and Its Management.

Purpose: This review aims at investigating pathophysiological mechanisms in spondyloarthritis (SpA). Analysis of genetic factors, immunological pathways, and abnormalities of bone metabolism lay the foundations for a better understanding of development of the axial clinical manifestations in patients, allowing physician to choose the most appropriate therapeutic strategy in a more targeted manner.

Recent findings: In addition to the contribution of MHC system, findings emerged about the role of non-HLA genes (as ERAP1 and 2, whose inhibition could represent a new therapeutic approach) and of epigenetic mechanisms that regulate the expression of genes involved in SpA pathogenesis. Increasing evidence of bone metabolism abnormalities secondary to the activation of immunological pathways suggests the development of various bone anomalies that are present in axSpA patients. SpA are a group of inflammatory diseases with a multifactorial origin, whose pathogenesis is linked to the genetic predisposition, the action of environmental risk factors, and the activation of immune response. It is now well known how bone metabolism leads to long-term structural damage via increased bone turnover, bone loss and osteoporosis, osteitis, erosions, osteosclerosis, and osteoproliferation. These effects can exist in the same patient over time or even simultaneously. Evidence suggests a cross relationship among innate immunity, autoimmunity, and bone remodeling in SpA, making treatment approach a challenge for rheumatologists. Specifically, treatment targets are consistently increasing as new drugs are upcoming. Both biological and targeted synthetic drugs are promising in terms of their efficacy and safety profile in patients affected by SpA.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.20
自引率
0.00%
发文量
41
期刊介绍: This journal aims to review the most important, recently published research in the field of rheumatology. By providing clear, insightful, balanced contributions by international experts, the journal intends to serve all those involved in the care and prevention of rheumatologic conditions. We accomplish this aim by appointing international authorities to serve as Section Editors in key subject areas such as the many forms of arthritis, osteoporosis and metabolic bone disease, and systemic lupus erythematosus. Section Editors, in turn, select topics for which leading experts contribute comprehensive review articles that emphasize new developments and recently published papers of major importance, highlighted by annotated reference lists. An international Editorial Board reviews the annual table of contents, suggests articles of special interest to their country/region, and ensures that topics are current and include emerging research. Commentaries from well-known figures in the field are also occasionally provided.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信