广义相对论的奇异性定理及其低正则性扩展。

Roland Steinbauer
{"title":"广义相对论的奇异性定理及其低正则性扩展。","authors":"Roland Steinbauer","doi":"10.1365/s13291-022-00263-7","DOIUrl":null,"url":null,"abstract":"<p><p>On the occasion of Sir Roger Penrose's 2020 Nobel Prize in Physics, we review the singularity theorems of General Relativity, as well as their recent extension to Lorentzian metrics of low regularity. The latter is motivated by the quest to explore the nature of the singularities predicted by the classical theorems. Aiming at the more mathematically minded reader, we give a pedagogical introduction to the classical theorems with an emphasis on the analytical side of the arguments. We especially concentrate on focusing results for causal geodesics under appropriate geometric and initial conditions, in the smooth and in the low regularity case. The latter comprise the main technical advance that leads to the proofs of <math><msup><mi>C</mi><mn>1</mn></msup></math>-singularity theorems via a regularisation approach that allows to deal with the distributional curvature. We close with an overview on related lines of research and a future outlook.</p>","PeriodicalId":73532,"journal":{"name":"Jahresbericht der Deutschen Mathematiker-Vereinigung. Deutsche Mathematiker-Vereinigung","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10228498/pdf/","citationCount":"7","resultStr":"{\"title\":\"The Singularity Theorems of General Relativity and Their Low Regularity Extensions.\",\"authors\":\"Roland Steinbauer\",\"doi\":\"10.1365/s13291-022-00263-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>On the occasion of Sir Roger Penrose's 2020 Nobel Prize in Physics, we review the singularity theorems of General Relativity, as well as their recent extension to Lorentzian metrics of low regularity. The latter is motivated by the quest to explore the nature of the singularities predicted by the classical theorems. Aiming at the more mathematically minded reader, we give a pedagogical introduction to the classical theorems with an emphasis on the analytical side of the arguments. We especially concentrate on focusing results for causal geodesics under appropriate geometric and initial conditions, in the smooth and in the low regularity case. The latter comprise the main technical advance that leads to the proofs of <math><msup><mi>C</mi><mn>1</mn></msup></math>-singularity theorems via a regularisation approach that allows to deal with the distributional curvature. We close with an overview on related lines of research and a future outlook.</p>\",\"PeriodicalId\":73532,\"journal\":{\"name\":\"Jahresbericht der Deutschen Mathematiker-Vereinigung. Deutsche Mathematiker-Vereinigung\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10228498/pdf/\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jahresbericht der Deutschen Mathematiker-Vereinigung. Deutsche Mathematiker-Vereinigung\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1365/s13291-022-00263-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/11/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jahresbericht der Deutschen Mathematiker-Vereinigung. Deutsche Mathematiker-Vereinigung","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1365/s13291-022-00263-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/11/9 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

在罗杰·彭罗斯爵士获得2020年诺贝尔物理学奖之际,我们回顾了广义相对论的奇异性定理,以及它们最近对低正则性洛伦兹度量的扩展。后者的动机是探索由经典定理预测的奇点的性质。针对更有数学头脑的读者,我们对经典定理进行了教学介绍,重点是论点的分析方面。我们特别关注在适当的几何和初始条件下,在光滑和低正则性的情况下,因果测地线的结果。后者包括通过正则化方法证明C1奇异性定理的主要技术进步,该方法允许处理分布曲率。最后,我们对相关研究领域进行了概述,并对未来进行了展望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The Singularity Theorems of General Relativity and Their Low Regularity Extensions.

The Singularity Theorems of General Relativity and Their Low Regularity Extensions.

On the occasion of Sir Roger Penrose's 2020 Nobel Prize in Physics, we review the singularity theorems of General Relativity, as well as their recent extension to Lorentzian metrics of low regularity. The latter is motivated by the quest to explore the nature of the singularities predicted by the classical theorems. Aiming at the more mathematically minded reader, we give a pedagogical introduction to the classical theorems with an emphasis on the analytical side of the arguments. We especially concentrate on focusing results for causal geodesics under appropriate geometric and initial conditions, in the smooth and in the low regularity case. The latter comprise the main technical advance that leads to the proofs of C1-singularity theorems via a regularisation approach that allows to deal with the distributional curvature. We close with an overview on related lines of research and a future outlook.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信