{"title":"基于大数据挖掘技术和快速感官评价方法的鲭鱼感官属性快速筛选","authors":"Yi-Zhen Huang, Yu Liu, Xi-Liang Yu, Ke Li, Guo-Dong Li, Bei-Wei Zhu, Xiu-Ping Dong","doi":"10.1111/jtxs.12776","DOIUrl":null,"url":null,"abstract":"<p>The present study aimed to investigate the potential of big data mining technology in conjunction with rapid sensory evaluation methods for the swift screening of sensory attributes of three kinds of frozen mackerel. Specifically, two rapid sensory evaluation methods, namely ideal profile method (IPM) and check-all-that-apply (CATA), were implemented and compared with the conventional descriptive analysis method. The results revealed that eight sensory attributes based on consumer network evaluations demonstrated significant consistency during the training process (<i>p</i> < .05). Notably, the application of web-based sensory attributes yielded highly comparable results between IPM and traditional descriptive analysis (0.915). Moreover, the results of the IPM preference map were in closer agreement with those of traditional descriptive analysis. While traditional sensory evaluation boasts high accuracy and a greater ability to detect nuances, the evolution of sensory evaluation technology has shifted its focus toward consumers. Rapid sensory evaluation analysis technology supports the collection of information directly from consumers, even by untrained or semi-trained groups, thereby presenting broad prospects for product qualitative analysis.</p>","PeriodicalId":17175,"journal":{"name":"Journal of texture studies","volume":"54 6","pages":"872-884"},"PeriodicalIF":2.8000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rapid screening of sensory attributes of mackerel using big data mining techniques and rapid sensory evaluation methods\",\"authors\":\"Yi-Zhen Huang, Yu Liu, Xi-Liang Yu, Ke Li, Guo-Dong Li, Bei-Wei Zhu, Xiu-Ping Dong\",\"doi\":\"10.1111/jtxs.12776\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The present study aimed to investigate the potential of big data mining technology in conjunction with rapid sensory evaluation methods for the swift screening of sensory attributes of three kinds of frozen mackerel. Specifically, two rapid sensory evaluation methods, namely ideal profile method (IPM) and check-all-that-apply (CATA), were implemented and compared with the conventional descriptive analysis method. The results revealed that eight sensory attributes based on consumer network evaluations demonstrated significant consistency during the training process (<i>p</i> < .05). Notably, the application of web-based sensory attributes yielded highly comparable results between IPM and traditional descriptive analysis (0.915). Moreover, the results of the IPM preference map were in closer agreement with those of traditional descriptive analysis. While traditional sensory evaluation boasts high accuracy and a greater ability to detect nuances, the evolution of sensory evaluation technology has shifted its focus toward consumers. Rapid sensory evaluation analysis technology supports the collection of information directly from consumers, even by untrained or semi-trained groups, thereby presenting broad prospects for product qualitative analysis.</p>\",\"PeriodicalId\":17175,\"journal\":{\"name\":\"Journal of texture studies\",\"volume\":\"54 6\",\"pages\":\"872-884\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of texture studies\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jtxs.12776\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of texture studies","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jtxs.12776","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Rapid screening of sensory attributes of mackerel using big data mining techniques and rapid sensory evaluation methods
The present study aimed to investigate the potential of big data mining technology in conjunction with rapid sensory evaluation methods for the swift screening of sensory attributes of three kinds of frozen mackerel. Specifically, two rapid sensory evaluation methods, namely ideal profile method (IPM) and check-all-that-apply (CATA), were implemented and compared with the conventional descriptive analysis method. The results revealed that eight sensory attributes based on consumer network evaluations demonstrated significant consistency during the training process (p < .05). Notably, the application of web-based sensory attributes yielded highly comparable results between IPM and traditional descriptive analysis (0.915). Moreover, the results of the IPM preference map were in closer agreement with those of traditional descriptive analysis. While traditional sensory evaluation boasts high accuracy and a greater ability to detect nuances, the evolution of sensory evaluation technology has shifted its focus toward consumers. Rapid sensory evaluation analysis technology supports the collection of information directly from consumers, even by untrained or semi-trained groups, thereby presenting broad prospects for product qualitative analysis.
期刊介绍:
The Journal of Texture Studies is a fully peer-reviewed international journal specialized in the physics, physiology, and psychology of food oral processing, with an emphasis on the food texture and structure, sensory perception and mouth-feel, food oral behaviour, food liking and preference. The journal was first published in 1969 and has been the primary source for disseminating advances in knowledge on all of the sciences that relate to food texture. In recent years, Journal of Texture Studies has expanded its coverage to a much broader range of texture research and continues to publish high quality original and innovative experimental-based (including numerical analysis and simulation) research concerned with all aspects of eating and food preference.
Journal of Texture Studies welcomes research articles, research notes, reviews, discussion papers, and communications from contributors of all relevant disciplines. Some key coverage areas/topics include (but not limited to):
• Physical, mechanical, and micro-structural principles of food texture
• Oral physiology
• Psychology and brain responses of eating and food sensory
• Food texture design and modification for specific consumers
• In vitro and in vivo studies of eating and swallowing
• Novel technologies and methodologies for the assessment of sensory properties
• Simulation and numerical analysis of eating and swallowing