Chang-Jing Huang, Chen-Yue Zhang, Ying-Ke Zhao, Dan Wang, Liping Zhuang, Ling Qian, Lin Xie, Ying Zhu, Zhi-Qiang Meng
{"title":"蟾毒灵通过调节ATP1A1/CA2轴抑制肝癌的肿瘤发生和srebp -1介导的脂肪生成。","authors":"Chang-Jing Huang, Chen-Yue Zhang, Ying-Ke Zhao, Dan Wang, Liping Zhuang, Ling Qian, Lin Xie, Ying Zhu, Zhi-Qiang Meng","doi":"10.1142/S0192415X23500246","DOIUrl":null,"url":null,"abstract":"<p><p>Altered lipid metabolism is a hallmark of hepatocellular carcinoma (HCC), a common malignancy with a dismal prognosis against which there is a lack of effective therapeutic strategies. Bufalin, a classical Na[Formula: see text]-K[Formula: see text]-ATPase (NKA) inhibitor, shows a potent antitumor effect against HCC. However, the role of bufalin in regulating lipid metabolism-related pathways of HCC remains unclear. In this study, we examined the interaction between bufalin and its target molecule, ATP1A1/CA2, <i>in vitro</i> and <i>in vivo</i> and explored the intersected downstream pathways <i>in silico</i>. A multi-omics analysis of transcriptomics and metabolomics was employed to screen for potential action targets. The results were verified and correlated with the downstream lipid <i>de novo</i> synthesis pathway and the bufalin/ATP1A1/CA2 axis. We found that bufalin suppressed the ATP1A1/CA2 ratio in the treated HCC cells and showed a negative correlation with bufalin drug sensitivity. Functionally, ATP1A1 overexpression and CA2 down-regulation inhibited the bufalin-suppressed HCC proliferation and metastasis. Furthermore, down-regulation of CA2 induced epithelial-mesenchymal transition and bufalin resistance in HCC cells by up-regulating ATP1A1. Mechanistically, lipid metabolism-related signaling pathways were enriched in low ATP1A1 and high CA2 expression subgroups in GSEA. The multi-omics analysis also showed that bufalin was closely related to lipid metabolism. We demonstrated that bufalin inhibits lipogenesis and tumorigenesis by down-regulating SREBP-1/FASN/ACLY via modulating the ATP1A1/CA2 axis in HCC.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bufalin Inhibits Tumorigenesis and SREBP-1-Mediated Lipogenesis in Hepatocellular Carcinoma via Modulating the ATP1A1/CA2 Axis.\",\"authors\":\"Chang-Jing Huang, Chen-Yue Zhang, Ying-Ke Zhao, Dan Wang, Liping Zhuang, Ling Qian, Lin Xie, Ying Zhu, Zhi-Qiang Meng\",\"doi\":\"10.1142/S0192415X23500246\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Altered lipid metabolism is a hallmark of hepatocellular carcinoma (HCC), a common malignancy with a dismal prognosis against which there is a lack of effective therapeutic strategies. Bufalin, a classical Na[Formula: see text]-K[Formula: see text]-ATPase (NKA) inhibitor, shows a potent antitumor effect against HCC. However, the role of bufalin in regulating lipid metabolism-related pathways of HCC remains unclear. In this study, we examined the interaction between bufalin and its target molecule, ATP1A1/CA2, <i>in vitro</i> and <i>in vivo</i> and explored the intersected downstream pathways <i>in silico</i>. A multi-omics analysis of transcriptomics and metabolomics was employed to screen for potential action targets. The results were verified and correlated with the downstream lipid <i>de novo</i> synthesis pathway and the bufalin/ATP1A1/CA2 axis. We found that bufalin suppressed the ATP1A1/CA2 ratio in the treated HCC cells and showed a negative correlation with bufalin drug sensitivity. Functionally, ATP1A1 overexpression and CA2 down-regulation inhibited the bufalin-suppressed HCC proliferation and metastasis. Furthermore, down-regulation of CA2 induced epithelial-mesenchymal transition and bufalin resistance in HCC cells by up-regulating ATP1A1. Mechanistically, lipid metabolism-related signaling pathways were enriched in low ATP1A1 and high CA2 expression subgroups in GSEA. The multi-omics analysis also showed that bufalin was closely related to lipid metabolism. We demonstrated that bufalin inhibits lipogenesis and tumorigenesis by down-regulating SREBP-1/FASN/ACLY via modulating the ATP1A1/CA2 axis in HCC.</p>\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1142/S0192415X23500246\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1142/S0192415X23500246","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Bufalin Inhibits Tumorigenesis and SREBP-1-Mediated Lipogenesis in Hepatocellular Carcinoma via Modulating the ATP1A1/CA2 Axis.
Altered lipid metabolism is a hallmark of hepatocellular carcinoma (HCC), a common malignancy with a dismal prognosis against which there is a lack of effective therapeutic strategies. Bufalin, a classical Na[Formula: see text]-K[Formula: see text]-ATPase (NKA) inhibitor, shows a potent antitumor effect against HCC. However, the role of bufalin in regulating lipid metabolism-related pathways of HCC remains unclear. In this study, we examined the interaction between bufalin and its target molecule, ATP1A1/CA2, in vitro and in vivo and explored the intersected downstream pathways in silico. A multi-omics analysis of transcriptomics and metabolomics was employed to screen for potential action targets. The results were verified and correlated with the downstream lipid de novo synthesis pathway and the bufalin/ATP1A1/CA2 axis. We found that bufalin suppressed the ATP1A1/CA2 ratio in the treated HCC cells and showed a negative correlation with bufalin drug sensitivity. Functionally, ATP1A1 overexpression and CA2 down-regulation inhibited the bufalin-suppressed HCC proliferation and metastasis. Furthermore, down-regulation of CA2 induced epithelial-mesenchymal transition and bufalin resistance in HCC cells by up-regulating ATP1A1. Mechanistically, lipid metabolism-related signaling pathways were enriched in low ATP1A1 and high CA2 expression subgroups in GSEA. The multi-omics analysis also showed that bufalin was closely related to lipid metabolism. We demonstrated that bufalin inhibits lipogenesis and tumorigenesis by down-regulating SREBP-1/FASN/ACLY via modulating the ATP1A1/CA2 axis in HCC.
期刊介绍:
ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.