{"title":"镉致肾毒性的表观遗传机制","authors":"Angela H. Guo , Surinder Kumar , David B. Lombard","doi":"10.1016/j.cotox.2022.100372","DOIUrl":null,"url":null,"abstract":"<div><p>Cadmium (Cd) is a widespread toxic pollutant that affects millions of individuals worldwide. Cd exposure in humans occurs primarily through consumption of contaminated food and water, cigarette smoking, and industrial applications. The kidney proximal tubular (PT) epithelial cells are the primary target of Cd toxicity. Cd-induced injury to PT cells impedes tubular reabsorption<span><span><span>. Despite the many long-term sequelae of Cd exposure, molecular mechanisms of Cd toxicity are poorly understood, and no specific therapies exist to mitigate the effects of Cd exposure. In this review, we summarize recent work linking Cd-mediated damage to epigenetic perturbations — DNA </span>methylation, and levels of </span>histone<span> modifications, including methylation and acetylation. New insights into the links between Cd intoxication and epigenetic damage will contribute to an improved understanding of Cd's pleiotropic impacts on cells, and perhaps lead to new, mechanism-based treatments for this condition.</span></span></p></div>","PeriodicalId":37736,"journal":{"name":"Current Opinion in Toxicology","volume":"32 ","pages":"Article 100372"},"PeriodicalIF":6.1000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Epigenetic mechanisms of cadmium-induced nephrotoxicity\",\"authors\":\"Angela H. Guo , Surinder Kumar , David B. Lombard\",\"doi\":\"10.1016/j.cotox.2022.100372\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Cadmium (Cd) is a widespread toxic pollutant that affects millions of individuals worldwide. Cd exposure in humans occurs primarily through consumption of contaminated food and water, cigarette smoking, and industrial applications. The kidney proximal tubular (PT) epithelial cells are the primary target of Cd toxicity. Cd-induced injury to PT cells impedes tubular reabsorption<span><span><span>. Despite the many long-term sequelae of Cd exposure, molecular mechanisms of Cd toxicity are poorly understood, and no specific therapies exist to mitigate the effects of Cd exposure. In this review, we summarize recent work linking Cd-mediated damage to epigenetic perturbations — DNA </span>methylation, and levels of </span>histone<span> modifications, including methylation and acetylation. New insights into the links between Cd intoxication and epigenetic damage will contribute to an improved understanding of Cd's pleiotropic impacts on cells, and perhaps lead to new, mechanism-based treatments for this condition.</span></span></p></div>\",\"PeriodicalId\":37736,\"journal\":{\"name\":\"Current Opinion in Toxicology\",\"volume\":\"32 \",\"pages\":\"Article 100372\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Toxicology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468202022000559\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"TOXICOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Toxicology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468202022000559","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TOXICOLOGY","Score":null,"Total":0}
Epigenetic mechanisms of cadmium-induced nephrotoxicity
Cadmium (Cd) is a widespread toxic pollutant that affects millions of individuals worldwide. Cd exposure in humans occurs primarily through consumption of contaminated food and water, cigarette smoking, and industrial applications. The kidney proximal tubular (PT) epithelial cells are the primary target of Cd toxicity. Cd-induced injury to PT cells impedes tubular reabsorption. Despite the many long-term sequelae of Cd exposure, molecular mechanisms of Cd toxicity are poorly understood, and no specific therapies exist to mitigate the effects of Cd exposure. In this review, we summarize recent work linking Cd-mediated damage to epigenetic perturbations — DNA methylation, and levels of histone modifications, including methylation and acetylation. New insights into the links between Cd intoxication and epigenetic damage will contribute to an improved understanding of Cd's pleiotropic impacts on cells, and perhaps lead to new, mechanism-based treatments for this condition.
期刊介绍:
The aims and scope of Current Opinion in Toxicology is to systematically provide the reader with timely and provocative views and opinions of the highest qualified and recognized experts on current advances in selected topics within the field of toxicology. The goal is that Current Opinion in Toxicology will be an invaluable source of information and perspective for researchers, teachers, managers and administrators, policy makers and students. Division of the subject into sections: For this purpose, the scope of Toxicology is divided into six selected high impact themed sections, each of which is reviewed once a year: Mechanistic Toxicology, Metabolic Toxicology, Risk assessment in Toxicology, Genomic Toxicology, Systems Toxicology, Translational Toxicology.