{"title":"乳腺癌线粒体转移RNA突变分析。","authors":"H J Ding, Y P Zhao, Z C Jiang, D T Zhou, R Zhu","doi":"10.2478/bjmg-2022-0020","DOIUrl":null,"url":null,"abstract":"<p><p>Damage of mitochondrial functions caused by mitochondrial DNA (mtDNA) pathogenic mutations had long been proposed to be involved in breast carcinogenesis. However, the detailed pathological mechanism remained deeply undetermined. In this case-control study, we screened the frequencies of mitochondrial tRNA (mt-tRNA) mutations in 80 breast cancer tissues and matched normal adjacent tissues. PCR and Sanger sequence revealed five possible pathogenic mutations: <i>tRNA<sup>Val</sup></i> G1606A, <i>tRNA<sup>Ile</sup></i> A4300G, <i>tRNA</i><sup><i>Ser</i>(UCN)</sup> T7505C, <i>tRNA<sup>Glu</sup></i> A14693G and <i>tRNA<sup>Thr</sup></i> G15927A. We noticed that these mutations resided at extremely conserved positions of tRNAs and would affect tRNAs transcription or modifications. Furthermore, functional analysis suggested that patients with these mt-tRNA mutations exhibited much lower levels of mtDNA copy number and ATP, as compared with controls (p<0.05). Therefore, it can be speculated that these mutations may impair mitochondrial protein synthesis and oxidative phosphorylation (OXPHOS) complexes, which caused mitochondrial dysfunctions that were involved in the breast carcinogenesis. Taken together, our data indicated that mutations in mt-tRNA were the important contributors to breast cancer, and mutational analyses of mt-tRNA genes were critical for prevention of breast cancer.</p>","PeriodicalId":55403,"journal":{"name":"Balkan Journal of Medical Genetics","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/1e/38/bjmg-25-2-bjmg-2022-0020.PMC10230833.pdf","citationCount":"0","resultStr":"{\"title\":\"Analysis of Mitochondrial Transfer RNA Mutations in Breast Cancer.\",\"authors\":\"H J Ding, Y P Zhao, Z C Jiang, D T Zhou, R Zhu\",\"doi\":\"10.2478/bjmg-2022-0020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Damage of mitochondrial functions caused by mitochondrial DNA (mtDNA) pathogenic mutations had long been proposed to be involved in breast carcinogenesis. However, the detailed pathological mechanism remained deeply undetermined. In this case-control study, we screened the frequencies of mitochondrial tRNA (mt-tRNA) mutations in 80 breast cancer tissues and matched normal adjacent tissues. PCR and Sanger sequence revealed five possible pathogenic mutations: <i>tRNA<sup>Val</sup></i> G1606A, <i>tRNA<sup>Ile</sup></i> A4300G, <i>tRNA</i><sup><i>Ser</i>(UCN)</sup> T7505C, <i>tRNA<sup>Glu</sup></i> A14693G and <i>tRNA<sup>Thr</sup></i> G15927A. We noticed that these mutations resided at extremely conserved positions of tRNAs and would affect tRNAs transcription or modifications. Furthermore, functional analysis suggested that patients with these mt-tRNA mutations exhibited much lower levels of mtDNA copy number and ATP, as compared with controls (p<0.05). Therefore, it can be speculated that these mutations may impair mitochondrial protein synthesis and oxidative phosphorylation (OXPHOS) complexes, which caused mitochondrial dysfunctions that were involved in the breast carcinogenesis. Taken together, our data indicated that mutations in mt-tRNA were the important contributors to breast cancer, and mutational analyses of mt-tRNA genes were critical for prevention of breast cancer.</p>\",\"PeriodicalId\":55403,\"journal\":{\"name\":\"Balkan Journal of Medical Genetics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/1e/38/bjmg-25-2-bjmg-2022-0020.PMC10230833.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Balkan Journal of Medical Genetics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2478/bjmg-2022-0020\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Balkan Journal of Medical Genetics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2478/bjmg-2022-0020","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Analysis of Mitochondrial Transfer RNA Mutations in Breast Cancer.
Damage of mitochondrial functions caused by mitochondrial DNA (mtDNA) pathogenic mutations had long been proposed to be involved in breast carcinogenesis. However, the detailed pathological mechanism remained deeply undetermined. In this case-control study, we screened the frequencies of mitochondrial tRNA (mt-tRNA) mutations in 80 breast cancer tissues and matched normal adjacent tissues. PCR and Sanger sequence revealed five possible pathogenic mutations: tRNAVal G1606A, tRNAIle A4300G, tRNASer(UCN) T7505C, tRNAGlu A14693G and tRNAThr G15927A. We noticed that these mutations resided at extremely conserved positions of tRNAs and would affect tRNAs transcription or modifications. Furthermore, functional analysis suggested that patients with these mt-tRNA mutations exhibited much lower levels of mtDNA copy number and ATP, as compared with controls (p<0.05). Therefore, it can be speculated that these mutations may impair mitochondrial protein synthesis and oxidative phosphorylation (OXPHOS) complexes, which caused mitochondrial dysfunctions that were involved in the breast carcinogenesis. Taken together, our data indicated that mutations in mt-tRNA were the important contributors to breast cancer, and mutational analyses of mt-tRNA genes were critical for prevention of breast cancer.
期刊介绍:
Balkan Journal of Medical Genetics is a journal in the English language for publication of articles involving all branches of medical genetics: human cytogenetics, molecular genetics, clinical genetics, immunogenetics, oncogenetics, pharmacogenetics, population genetics, genetic screening and diagnosis of monogenic and polygenic diseases, prenatal and preimplantation genetic diagnosis, genetic counselling, advances in treatment and prevention.