{"title":"沙门氏菌携带IDO2-siRNA联合硝呋肼抑制黑色素瘤生长","authors":"Tiesuo Zhao, Mengmeng Guo, Haoqi Chen, Lin Zhou, Jing Guo, Shenzhen Liu, Zizhong Wang, Wenshuai Huang, Qiang Zhang, Jiateng Zhong, Mingyong Wang, Huijie Jia, Yongxi Zhang","doi":"10.2174/1874467217666230329102030","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Melanoma, a highly malignant skin cancer, is a hot topic in oncology treatment research. Nowadays, tumor immunotherapy, especially immunotherapy combined with other therapies, has attracted more and more attention. Indoleamine 2,3-dioxygenase 2 (IDO2), a ratelimiting enzyme of the tryptophan metabolism pathway in the urine of dogs with immunosuppression, is highly expressed in melanoma tissue. Additionally, IDO2 significantly inhibits the anti-tumor immunity of the body and has become a novel target of melanoma treatment. Nifuroxazide, as an intestinal antibacterial agent, was found to be able to inhibit Stat3 expression and exert an anti-tumor effect. Therefore, the present study aimed to examine the therapeutic effect of a self-designed IDO2-small interfering RNA (siRNA) delivered by attenuated <i>Salmonella</i> combined with nifuroxazide on melanoma- bearing mice, as well as determine its underlying mechanism.</p><p><strong>Methods: </strong>The effect of nifuroxazide on melanoma was detected by flow cytometry, CCK-8 and colony- forming ability assays, respectively, <i>in vitro</i>. The plasmid of siRNA-IDO2 was constructed, and the mice-bearing melanoma model was established. After the treatment, the tumor growth and survival rate were monitored, and the morphological changes of tumor tissue were detected by HE staining. The expression of related proteins was detected by Western blotting, and the expression of CD4 and CD8 positive T cells in tumor tissue was detected by IHC and IF, and the proportion of CD4 and CD8 positive T cells in spleen was detected by flow cytometry.</p><p><strong>Results: </strong>The results demonstrated that the combination therapy effectively inhibited the phosphorylation of Stat3 and the expression level of IDO2 in melanoma cells, which effectively inhibited tumor growth and prolonged the survival time of tumor-bearing mice. The mechanistic study revealed that, compared with control groups and monotherapy groups, the combination treatment group reduced the atypia of tumor cells, increased the apoptotic rate, enhanced the infiltration of T lymphocytes in tumor tissue and increased the CD4<sup>+</sup> and CD8<sup>+</sup> T lymphocytes in the spleen, suggesting that the mechanism may be associated with the inhibition of tumor cell proliferation, the increase of apoptosis and the enhancement of the cellular immunity.</p><p><strong>Conclusion: </strong>In conclusion, IDO2-siRNA combined with nifuroxazide therapy could serve a significant role in the treatment of melanoma-bearing mice, enhance the tumor immunity and provide an experimental basis for identifying a novel combination method for the treatment of melanoma clinically.</p>","PeriodicalId":10865,"journal":{"name":"Current molecular pharmacology","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"IDO2-siRNA Carried by <i>Salmonella</i> Combined with Nifuroxazide Attenuates Melanoma Growth.\",\"authors\":\"Tiesuo Zhao, Mengmeng Guo, Haoqi Chen, Lin Zhou, Jing Guo, Shenzhen Liu, Zizhong Wang, Wenshuai Huang, Qiang Zhang, Jiateng Zhong, Mingyong Wang, Huijie Jia, Yongxi Zhang\",\"doi\":\"10.2174/1874467217666230329102030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Melanoma, a highly malignant skin cancer, is a hot topic in oncology treatment research. Nowadays, tumor immunotherapy, especially immunotherapy combined with other therapies, has attracted more and more attention. Indoleamine 2,3-dioxygenase 2 (IDO2), a ratelimiting enzyme of the tryptophan metabolism pathway in the urine of dogs with immunosuppression, is highly expressed in melanoma tissue. Additionally, IDO2 significantly inhibits the anti-tumor immunity of the body and has become a novel target of melanoma treatment. Nifuroxazide, as an intestinal antibacterial agent, was found to be able to inhibit Stat3 expression and exert an anti-tumor effect. Therefore, the present study aimed to examine the therapeutic effect of a self-designed IDO2-small interfering RNA (siRNA) delivered by attenuated <i>Salmonella</i> combined with nifuroxazide on melanoma- bearing mice, as well as determine its underlying mechanism.</p><p><strong>Methods: </strong>The effect of nifuroxazide on melanoma was detected by flow cytometry, CCK-8 and colony- forming ability assays, respectively, <i>in vitro</i>. The plasmid of siRNA-IDO2 was constructed, and the mice-bearing melanoma model was established. After the treatment, the tumor growth and survival rate were monitored, and the morphological changes of tumor tissue were detected by HE staining. The expression of related proteins was detected by Western blotting, and the expression of CD4 and CD8 positive T cells in tumor tissue was detected by IHC and IF, and the proportion of CD4 and CD8 positive T cells in spleen was detected by flow cytometry.</p><p><strong>Results: </strong>The results demonstrated that the combination therapy effectively inhibited the phosphorylation of Stat3 and the expression level of IDO2 in melanoma cells, which effectively inhibited tumor growth and prolonged the survival time of tumor-bearing mice. The mechanistic study revealed that, compared with control groups and monotherapy groups, the combination treatment group reduced the atypia of tumor cells, increased the apoptotic rate, enhanced the infiltration of T lymphocytes in tumor tissue and increased the CD4<sup>+</sup> and CD8<sup>+</sup> T lymphocytes in the spleen, suggesting that the mechanism may be associated with the inhibition of tumor cell proliferation, the increase of apoptosis and the enhancement of the cellular immunity.</p><p><strong>Conclusion: </strong>In conclusion, IDO2-siRNA combined with nifuroxazide therapy could serve a significant role in the treatment of melanoma-bearing mice, enhance the tumor immunity and provide an experimental basis for identifying a novel combination method for the treatment of melanoma clinically.</p>\",\"PeriodicalId\":10865,\"journal\":{\"name\":\"Current molecular pharmacology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current molecular pharmacology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.2174/1874467217666230329102030\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current molecular pharmacology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.2174/1874467217666230329102030","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
IDO2-siRNA Carried by Salmonella Combined with Nifuroxazide Attenuates Melanoma Growth.
Background: Melanoma, a highly malignant skin cancer, is a hot topic in oncology treatment research. Nowadays, tumor immunotherapy, especially immunotherapy combined with other therapies, has attracted more and more attention. Indoleamine 2,3-dioxygenase 2 (IDO2), a ratelimiting enzyme of the tryptophan metabolism pathway in the urine of dogs with immunosuppression, is highly expressed in melanoma tissue. Additionally, IDO2 significantly inhibits the anti-tumor immunity of the body and has become a novel target of melanoma treatment. Nifuroxazide, as an intestinal antibacterial agent, was found to be able to inhibit Stat3 expression and exert an anti-tumor effect. Therefore, the present study aimed to examine the therapeutic effect of a self-designed IDO2-small interfering RNA (siRNA) delivered by attenuated Salmonella combined with nifuroxazide on melanoma- bearing mice, as well as determine its underlying mechanism.
Methods: The effect of nifuroxazide on melanoma was detected by flow cytometry, CCK-8 and colony- forming ability assays, respectively, in vitro. The plasmid of siRNA-IDO2 was constructed, and the mice-bearing melanoma model was established. After the treatment, the tumor growth and survival rate were monitored, and the morphological changes of tumor tissue were detected by HE staining. The expression of related proteins was detected by Western blotting, and the expression of CD4 and CD8 positive T cells in tumor tissue was detected by IHC and IF, and the proportion of CD4 and CD8 positive T cells in spleen was detected by flow cytometry.
Results: The results demonstrated that the combination therapy effectively inhibited the phosphorylation of Stat3 and the expression level of IDO2 in melanoma cells, which effectively inhibited tumor growth and prolonged the survival time of tumor-bearing mice. The mechanistic study revealed that, compared with control groups and monotherapy groups, the combination treatment group reduced the atypia of tumor cells, increased the apoptotic rate, enhanced the infiltration of T lymphocytes in tumor tissue and increased the CD4+ and CD8+ T lymphocytes in the spleen, suggesting that the mechanism may be associated with the inhibition of tumor cell proliferation, the increase of apoptosis and the enhancement of the cellular immunity.
Conclusion: In conclusion, IDO2-siRNA combined with nifuroxazide therapy could serve a significant role in the treatment of melanoma-bearing mice, enhance the tumor immunity and provide an experimental basis for identifying a novel combination method for the treatment of melanoma clinically.
期刊介绍:
Current Molecular Pharmacology aims to publish the latest developments in cellular and molecular pharmacology with a major emphasis on the mechanism of action of novel drugs under development, innovative pharmacological technologies, cell signaling, transduction pathway analysis, genomics, proteomics, and metabonomics applications to drug action. An additional focus will be the way in which normal biological function is illuminated by knowledge of the action of drugs at the cellular and molecular level. The journal publishes full-length/mini reviews, original research articles and thematic issues on molecular pharmacology.
Current Molecular Pharmacology is an essential journal for every scientist who is involved in drug design and discovery, target identification, target validation, preclinical and clinical development of drugs therapeutically useful in human disease.