Ammar Almarghlani, Rajendra P Settem, Andrew J Croft, Sarah Metcalfe, Matthew Giangreco, Jason G Kay
{"title":"白细胞介素-34允许牙龈卟啉单胞菌存活和巨噬细胞中NF-κB p65抑制。","authors":"Ammar Almarghlani, Rajendra P Settem, Andrew J Croft, Sarah Metcalfe, Matthew Giangreco, Jason G Kay","doi":"10.1111/omi.12366","DOIUrl":null,"url":null,"abstract":"<p><p>Interleukin-34 (IL-34) is a cytokine that supports the viability and differentiation of macrophages. An important cytokine for the development of epidermal immunity, IL-34, is present and plays a role in the immunity of the oral environment. IL-34 has been linked to inflammatory periodontal diseases, which involve innate phagocytes, including macrophages. Whether IL-34 can alter the ability of macrophages to effectively interact with oral microbes is currently unclear. Using macrophages derived from human blood monocytes with either the canonical cytokine colony-stimulating factor (CSF)1 or IL-34, we compared the ability of the macrophages to phagocytose, kill, and respond through the production of cytokines to the periodontal keystone pathogen Porphyromonas gingivalis. While macrophages derived from both cytokines were able to engulf the bacterium equally, IL-34-derived macrophages were much less capable of killing internalized P. gingivalis. Of the macrophage cell surface receptors known to interact with P. gingivalis, dendritic cell-specific intercellular adhesion molecule-grabbing nonintegrin was found to have the largest variation between IL-34- and CSF1-derived macrophages. We also found that upon interaction with P. gingivalis, IL-34-derived macrophages produced significantly less of the neutrophil chemotactic factor IL-8 than macrophages derived in the presence of CSF1. Mechanistically, we identified that the levels of IL-8 corresponded with P. gingivalis survival and dephosphorylation of the major transcription factor NF-κB p65. Overall, we found that macrophages differentiated in the presence of IL-34, a dominant cytokine in the oral gingiva, have a reduced ability to kill the keystone pathogen P. gingivalis and may be susceptible to specific bacteria-mediated cytokine modification.</p>","PeriodicalId":18815,"journal":{"name":"Molecular Oral Microbiology","volume":"37 3","pages":"109-121"},"PeriodicalIF":2.8000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9617590/pdf/nihms-1842805.pdf","citationCount":"3","resultStr":"{\"title\":\"Interleukin-34 permits Porphyromonas gingivalis survival and NF-κB p65 inhibition in macrophages.\",\"authors\":\"Ammar Almarghlani, Rajendra P Settem, Andrew J Croft, Sarah Metcalfe, Matthew Giangreco, Jason G Kay\",\"doi\":\"10.1111/omi.12366\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Interleukin-34 (IL-34) is a cytokine that supports the viability and differentiation of macrophages. An important cytokine for the development of epidermal immunity, IL-34, is present and plays a role in the immunity of the oral environment. IL-34 has been linked to inflammatory periodontal diseases, which involve innate phagocytes, including macrophages. Whether IL-34 can alter the ability of macrophages to effectively interact with oral microbes is currently unclear. Using macrophages derived from human blood monocytes with either the canonical cytokine colony-stimulating factor (CSF)1 or IL-34, we compared the ability of the macrophages to phagocytose, kill, and respond through the production of cytokines to the periodontal keystone pathogen Porphyromonas gingivalis. While macrophages derived from both cytokines were able to engulf the bacterium equally, IL-34-derived macrophages were much less capable of killing internalized P. gingivalis. Of the macrophage cell surface receptors known to interact with P. gingivalis, dendritic cell-specific intercellular adhesion molecule-grabbing nonintegrin was found to have the largest variation between IL-34- and CSF1-derived macrophages. We also found that upon interaction with P. gingivalis, IL-34-derived macrophages produced significantly less of the neutrophil chemotactic factor IL-8 than macrophages derived in the presence of CSF1. Mechanistically, we identified that the levels of IL-8 corresponded with P. gingivalis survival and dephosphorylation of the major transcription factor NF-κB p65. Overall, we found that macrophages differentiated in the presence of IL-34, a dominant cytokine in the oral gingiva, have a reduced ability to kill the keystone pathogen P. gingivalis and may be susceptible to specific bacteria-mediated cytokine modification.</p>\",\"PeriodicalId\":18815,\"journal\":{\"name\":\"Molecular Oral Microbiology\",\"volume\":\"37 3\",\"pages\":\"109-121\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9617590/pdf/nihms-1842805.pdf\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Oral Microbiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1111/omi.12366\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"DENTISTRY, ORAL SURGERY & MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Oral Microbiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/omi.12366","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
Interleukin-34 permits Porphyromonas gingivalis survival and NF-κB p65 inhibition in macrophages.
Interleukin-34 (IL-34) is a cytokine that supports the viability and differentiation of macrophages. An important cytokine for the development of epidermal immunity, IL-34, is present and plays a role in the immunity of the oral environment. IL-34 has been linked to inflammatory periodontal diseases, which involve innate phagocytes, including macrophages. Whether IL-34 can alter the ability of macrophages to effectively interact with oral microbes is currently unclear. Using macrophages derived from human blood monocytes with either the canonical cytokine colony-stimulating factor (CSF)1 or IL-34, we compared the ability of the macrophages to phagocytose, kill, and respond through the production of cytokines to the periodontal keystone pathogen Porphyromonas gingivalis. While macrophages derived from both cytokines were able to engulf the bacterium equally, IL-34-derived macrophages were much less capable of killing internalized P. gingivalis. Of the macrophage cell surface receptors known to interact with P. gingivalis, dendritic cell-specific intercellular adhesion molecule-grabbing nonintegrin was found to have the largest variation between IL-34- and CSF1-derived macrophages. We also found that upon interaction with P. gingivalis, IL-34-derived macrophages produced significantly less of the neutrophil chemotactic factor IL-8 than macrophages derived in the presence of CSF1. Mechanistically, we identified that the levels of IL-8 corresponded with P. gingivalis survival and dephosphorylation of the major transcription factor NF-κB p65. Overall, we found that macrophages differentiated in the presence of IL-34, a dominant cytokine in the oral gingiva, have a reduced ability to kill the keystone pathogen P. gingivalis and may be susceptible to specific bacteria-mediated cytokine modification.
期刊介绍:
Molecular Oral Microbiology publishes high quality research papers and reviews on fundamental or applied molecular studies of microorganisms of the oral cavity and respiratory tract, host-microbe interactions, cellular microbiology, molecular ecology, and immunological studies of oral and respiratory tract infections.
Papers describing work in virology, or in immunology unrelated to microbial colonization or infection, will not be acceptable. Studies of the prevalence of organisms or of antimicrobials agents also are not within the scope of the journal.
The journal does not publish Short Communications or Letters to the Editor.
Molecular Oral Microbiology is published bimonthly.