五氨基酸富勒烯C60衍生物对代谢紊乱大鼠的降糖降血脂作用。

IF 2.9 4区 生物学 Q2 BIOPHYSICS
Yuliya V Soldatova, David A Areshidze, Maria A Kozlova, Alexander V Zhilenkov, Olga A Kraevaya, Irina I Faingold, Pavel A Troshin, Raisa A Kotelnikova
{"title":"五氨基酸富勒烯C60衍生物对代谢紊乱大鼠的降糖降血脂作用。","authors":"Yuliya V Soldatova,&nbsp;David A Areshidze,&nbsp;Maria A Kozlova,&nbsp;Alexander V Zhilenkov,&nbsp;Olga A Kraevaya,&nbsp;Irina I Faingold,&nbsp;Pavel A Troshin,&nbsp;Raisa A Kotelnikova","doi":"10.1007/s10863-023-09961-y","DOIUrl":null,"url":null,"abstract":"<p><p>Pentaamino acid fullerene C<sub>60</sub> derivative is a promising nanomaterial, which exhibited antihyperglycemic activity in high-fat diet and streptozotocin-induced diabetic rats. This study investigates the effect of pentaaminoacid C<sub>60</sub> derivative (PFD) in rats with metabolic disorders. Rats were assigned to 3 groups (of 10 rats each) as follows: Group 1 (normal control), group 2 included the protamine-sulfate-treated rats (the untreated group of animals with the model metabolic disorder); group 3 (Protamine sulfate + PFD) included the protamine-sulfate-treated model rats that received an intraperitoneal injection of PFD. Metabolic disorder in rats was initiated by protamine sulfate (PS) administration. The PS + PFD group was injected intraperitoneally with PFD solution (3 mg/kg). Protamine sulfate induces biochemical changes (hyperglycemia, hypercholesterolemia, and hypertriglyceridemia) in the blood and morphological lesions in rat liver and pancreas. The potassium salt of fullerenylpenta-N-dihydroxytyrosine in protamine sulfate-induced rats normalized blood glucose level and the serum lipid profile and improved hepatic function markers. Treatment with PFD restored pancreas islets and liver structure of protamine sulfate-induced rats compared to the untreated group. PFD is a promising compound for further study as a drug against metabolic disorders.</p>","PeriodicalId":15080,"journal":{"name":"Journal of Bioenergetics and Biomembranes","volume":"55 2","pages":"93-101"},"PeriodicalIF":2.9000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hypoglycemic and hypolipidemic effect of pentaamino acid fullerene C<sub>60</sub> derivative in rats with metabolic disorder.\",\"authors\":\"Yuliya V Soldatova,&nbsp;David A Areshidze,&nbsp;Maria A Kozlova,&nbsp;Alexander V Zhilenkov,&nbsp;Olga A Kraevaya,&nbsp;Irina I Faingold,&nbsp;Pavel A Troshin,&nbsp;Raisa A Kotelnikova\",\"doi\":\"10.1007/s10863-023-09961-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Pentaamino acid fullerene C<sub>60</sub> derivative is a promising nanomaterial, which exhibited antihyperglycemic activity in high-fat diet and streptozotocin-induced diabetic rats. This study investigates the effect of pentaaminoacid C<sub>60</sub> derivative (PFD) in rats with metabolic disorders. Rats were assigned to 3 groups (of 10 rats each) as follows: Group 1 (normal control), group 2 included the protamine-sulfate-treated rats (the untreated group of animals with the model metabolic disorder); group 3 (Protamine sulfate + PFD) included the protamine-sulfate-treated model rats that received an intraperitoneal injection of PFD. Metabolic disorder in rats was initiated by protamine sulfate (PS) administration. The PS + PFD group was injected intraperitoneally with PFD solution (3 mg/kg). Protamine sulfate induces biochemical changes (hyperglycemia, hypercholesterolemia, and hypertriglyceridemia) in the blood and morphological lesions in rat liver and pancreas. The potassium salt of fullerenylpenta-N-dihydroxytyrosine in protamine sulfate-induced rats normalized blood glucose level and the serum lipid profile and improved hepatic function markers. Treatment with PFD restored pancreas islets and liver structure of protamine sulfate-induced rats compared to the untreated group. PFD is a promising compound for further study as a drug against metabolic disorders.</p>\",\"PeriodicalId\":15080,\"journal\":{\"name\":\"Journal of Bioenergetics and Biomembranes\",\"volume\":\"55 2\",\"pages\":\"93-101\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Bioenergetics and Biomembranes\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s10863-023-09961-y\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bioenergetics and Biomembranes","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10863-023-09961-y","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

五氨基酸富勒烯C60衍生物是一种很有前途的纳米材料,在高脂肪饮食和链脲霉素诱导的糖尿病大鼠中表现出抗高血糖活性。本研究探讨了五氨基酸C60衍生物(PFD)对代谢性疾病大鼠的影响。将大鼠分为3组,每组10只,分别为:1组为正常对照,2组为精蛋白硫酸盐处理大鼠(未处理的代谢紊乱模型动物组);第3组(鱼精蛋白硫酸盐+ PFD)为鱼精蛋白硫酸盐处理模型大鼠,腹腔注射PFD。硫酸鱼精蛋白(PS)引起大鼠代谢紊乱。PS + PFD组腹腔注射PFD溶液(3 mg/kg)。硫酸鱼精蛋白可引起血液生化变化(高血糖、高胆固醇血症和高甘油三酯血症)和大鼠肝脏和胰腺的形态学病变。硫酸鱼精蛋白诱导大鼠血糖、血脂水平正常化,肝功能指标改善。与未治疗组相比,PFD治疗可恢复鱼精蛋白诱导大鼠的胰岛和肝脏结构。PFD作为一种治疗代谢紊乱的药物,具有进一步研究的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Hypoglycemic and hypolipidemic effect of pentaamino acid fullerene C<sub>60</sub> derivative in rats with metabolic disorder.

Hypoglycemic and hypolipidemic effect of pentaamino acid fullerene C60 derivative in rats with metabolic disorder.

Pentaamino acid fullerene C60 derivative is a promising nanomaterial, which exhibited antihyperglycemic activity in high-fat diet and streptozotocin-induced diabetic rats. This study investigates the effect of pentaaminoacid C60 derivative (PFD) in rats with metabolic disorders. Rats were assigned to 3 groups (of 10 rats each) as follows: Group 1 (normal control), group 2 included the protamine-sulfate-treated rats (the untreated group of animals with the model metabolic disorder); group 3 (Protamine sulfate + PFD) included the protamine-sulfate-treated model rats that received an intraperitoneal injection of PFD. Metabolic disorder in rats was initiated by protamine sulfate (PS) administration. The PS + PFD group was injected intraperitoneally with PFD solution (3 mg/kg). Protamine sulfate induces biochemical changes (hyperglycemia, hypercholesterolemia, and hypertriglyceridemia) in the blood and morphological lesions in rat liver and pancreas. The potassium salt of fullerenylpenta-N-dihydroxytyrosine in protamine sulfate-induced rats normalized blood glucose level and the serum lipid profile and improved hepatic function markers. Treatment with PFD restored pancreas islets and liver structure of protamine sulfate-induced rats compared to the untreated group. PFD is a promising compound for further study as a drug against metabolic disorders.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.00
自引率
0.00%
发文量
22
审稿时长
6-12 weeks
期刊介绍: The Journal of Bioenergetics and Biomembranes is an international journal devoted to the publication of original research that contributes to fundamental knowledge in the areas of bioenergetics, biomembranes, and transport, including oxidative phosphorylation, photosynthesis, muscle contraction, as well as cellular and systemic metabolism. The timely research in this international journal benefits biophysicists, membrane biologists, cell biologists, biochemists, molecular biologists, physiologists, endocrinologists, and bio-organic chemists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信