Jessica Kimmel, Marius Schmitt, Alexej Sinner, Pascal Wilhelmus Theodorus Christianus Jansen, Sheila Mainye, Gala Ramón-Zamorano, Christa Geeke Toenhake, Jan Stephan Wichers-Misterek, Jakob Cronshagen, Ricarda Sabitzki, Paolo Mesén-Ramírez, Hannah Michaela Behrens, Richárd Bártfai, Tobias Spielmann
{"title":"恶性疟原虫3号染色体未知编码蛋白的逐基因筛选。","authors":"Jessica Kimmel, Marius Schmitt, Alexej Sinner, Pascal Wilhelmus Theodorus Christianus Jansen, Sheila Mainye, Gala Ramón-Zamorano, Christa Geeke Toenhake, Jan Stephan Wichers-Misterek, Jakob Cronshagen, Ricarda Sabitzki, Paolo Mesén-Ramírez, Hannah Michaela Behrens, Richárd Bártfai, Tobias Spielmann","doi":"10.1016/j.cels.2022.12.001","DOIUrl":null,"url":null,"abstract":"<p><p>Taxon-specific proteins are key determinants defining the biology of all organisms and represent prime drug targets in pathogens. However, lacking comparability with proteins in other lineages makes them particularly difficult to study. In malaria parasites, this is exacerbated by technical limitations. Here, we analyzed the cellular location, essentiality, function, and, in selected cases, interactome of all unknown non-secretory proteins encoded on an entire P. falciparum chromosome. The nucleus was the most common localization, indicating that it is a hotspot of parasite-specific biology. More in-depth functional studies with four proteins revealed essential roles in DNA replication and mitosis. The mitosis proteins defined a possible orphan complex and a highly diverged complex needed for spindle-kinetochore connection. Structure-function comparisons indicated that the taxon-specific proteins evolved by different mechanisms. This work demonstrates the feasibility of gene-by-gene screens to elucidate the biology of malaria parasites and reveal critical parasite-specific processes of interest as drug targets.</p>","PeriodicalId":54348,"journal":{"name":"Cell Systems","volume":null,"pages":null},"PeriodicalIF":9.0000,"publicationDate":"2023-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Gene-by-gene screen of the unknown proteins encoded on Plasmodium falciparum chromosome 3.\",\"authors\":\"Jessica Kimmel, Marius Schmitt, Alexej Sinner, Pascal Wilhelmus Theodorus Christianus Jansen, Sheila Mainye, Gala Ramón-Zamorano, Christa Geeke Toenhake, Jan Stephan Wichers-Misterek, Jakob Cronshagen, Ricarda Sabitzki, Paolo Mesén-Ramírez, Hannah Michaela Behrens, Richárd Bártfai, Tobias Spielmann\",\"doi\":\"10.1016/j.cels.2022.12.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Taxon-specific proteins are key determinants defining the biology of all organisms and represent prime drug targets in pathogens. However, lacking comparability with proteins in other lineages makes them particularly difficult to study. In malaria parasites, this is exacerbated by technical limitations. Here, we analyzed the cellular location, essentiality, function, and, in selected cases, interactome of all unknown non-secretory proteins encoded on an entire P. falciparum chromosome. The nucleus was the most common localization, indicating that it is a hotspot of parasite-specific biology. More in-depth functional studies with four proteins revealed essential roles in DNA replication and mitosis. The mitosis proteins defined a possible orphan complex and a highly diverged complex needed for spindle-kinetochore connection. Structure-function comparisons indicated that the taxon-specific proteins evolved by different mechanisms. This work demonstrates the feasibility of gene-by-gene screens to elucidate the biology of malaria parasites and reveal critical parasite-specific processes of interest as drug targets.</p>\",\"PeriodicalId\":54348,\"journal\":{\"name\":\"Cell Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.0000,\"publicationDate\":\"2023-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Systems\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.cels.2022.12.001\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Systems","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cels.2022.12.001","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Gene-by-gene screen of the unknown proteins encoded on Plasmodium falciparum chromosome 3.
Taxon-specific proteins are key determinants defining the biology of all organisms and represent prime drug targets in pathogens. However, lacking comparability with proteins in other lineages makes them particularly difficult to study. In malaria parasites, this is exacerbated by technical limitations. Here, we analyzed the cellular location, essentiality, function, and, in selected cases, interactome of all unknown non-secretory proteins encoded on an entire P. falciparum chromosome. The nucleus was the most common localization, indicating that it is a hotspot of parasite-specific biology. More in-depth functional studies with four proteins revealed essential roles in DNA replication and mitosis. The mitosis proteins defined a possible orphan complex and a highly diverged complex needed for spindle-kinetochore connection. Structure-function comparisons indicated that the taxon-specific proteins evolved by different mechanisms. This work demonstrates the feasibility of gene-by-gene screens to elucidate the biology of malaria parasites and reveal critical parasite-specific processes of interest as drug targets.
Cell SystemsMedicine-Pathology and Forensic Medicine
CiteScore
16.50
自引率
1.10%
发文量
84
审稿时长
42 days
期刊介绍:
In 2015, Cell Systems was founded as a platform within Cell Press to showcase innovative research in systems biology. Our primary goal is to investigate complex biological phenomena that cannot be simply explained by basic mathematical principles. While the physical sciences have long successfully tackled such challenges, we have discovered that our most impactful publications often employ quantitative, inference-based methodologies borrowed from the fields of physics, engineering, mathematics, and computer science. We are committed to providing a home for elegant research that addresses fundamental questions in systems biology.