Xiao-Ying Li, Feng Gao, Xiao-Cong Wang, Lu-Lu Liu, Yu Gan, Shuang-Ze Han, Li Zhou, Wei Li, Ming Li
{"title":"姜黄酚通过抑制EGFR-Akt-Mcl-1信号发挥抗肿瘤作用。","authors":"Xiao-Ying Li, Feng Gao, Xiao-Cong Wang, Lu-Lu Liu, Yu Gan, Shuang-Ze Han, Li Zhou, Wei Li, Ming Li","doi":"10.1142/S0192415X23500350","DOIUrl":null,"url":null,"abstract":"<p><p>Dysfunction of epidermal growth factor receptor (EGFR) signaling plays a critical role in the tumorigenesis of oral squamous cell carcinoma (OSCC). In the present study, the data analysis results of immunohistochemistry and the TCGA database verified that the expression of EGFR is significantly upregulated in OSCC tumor tissues, and depletion of EGFR inhibits the growth of OSCC cells <i>in vitro</i> and <i>in vivo</i>. Moreover, these results showed that the natural compound, curcumol, exhibited a profound antitumor effect on OSCC cells. Western blotting, MTS, and immunofluorescent staining assays indicated that curcumol inhibited cell proliferation and induced intrinsic apoptosis in OSCC cells via downregulating myeloid cell leukemia 1 (Mcl-1). A mechanistic study revealed that curcumol inhibited the EGFR-Akt signal pathway, which activated GSK-3[Formula: see text]-mediated Mcl-1 phosphorylation. Further research showed that curcumol-induced Mcl-1 Ser159 phosphorylation is required to disrupt the interaction between deubiquitinase JOSD1 and Mcl-1 and eventually induce Mcl-1 ubiquitination and degradation. In addition, curcumol administration can effectively inhibit CAL27 and SCC25 xenograft tumor growth and is well-tolerated <i>in vivo</i>. Finally, we demonstrated that Mcl-1 is upregulated and positively correlates with p-EGFR and p-Akt in OSCC tumor tissues. Collectively, the present results provide new insights into the antitumor mechanism of curcumol, identifying it as an attractive therapeutic agent that reduces Mcl-1 expression and inhibits OSCC growth. Targeting EGFR/Akt/Mcl-1 signaling could be a promising option in the clinical treatment of OSCC.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Curcumol Exerts Antitumor Effect via Inhibiting EGFR-Akt-Mcl-1 Signaling.\",\"authors\":\"Xiao-Ying Li, Feng Gao, Xiao-Cong Wang, Lu-Lu Liu, Yu Gan, Shuang-Ze Han, Li Zhou, Wei Li, Ming Li\",\"doi\":\"10.1142/S0192415X23500350\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Dysfunction of epidermal growth factor receptor (EGFR) signaling plays a critical role in the tumorigenesis of oral squamous cell carcinoma (OSCC). In the present study, the data analysis results of immunohistochemistry and the TCGA database verified that the expression of EGFR is significantly upregulated in OSCC tumor tissues, and depletion of EGFR inhibits the growth of OSCC cells <i>in vitro</i> and <i>in vivo</i>. Moreover, these results showed that the natural compound, curcumol, exhibited a profound antitumor effect on OSCC cells. Western blotting, MTS, and immunofluorescent staining assays indicated that curcumol inhibited cell proliferation and induced intrinsic apoptosis in OSCC cells via downregulating myeloid cell leukemia 1 (Mcl-1). A mechanistic study revealed that curcumol inhibited the EGFR-Akt signal pathway, which activated GSK-3[Formula: see text]-mediated Mcl-1 phosphorylation. Further research showed that curcumol-induced Mcl-1 Ser159 phosphorylation is required to disrupt the interaction between deubiquitinase JOSD1 and Mcl-1 and eventually induce Mcl-1 ubiquitination and degradation. In addition, curcumol administration can effectively inhibit CAL27 and SCC25 xenograft tumor growth and is well-tolerated <i>in vivo</i>. Finally, we demonstrated that Mcl-1 is upregulated and positively correlates with p-EGFR and p-Akt in OSCC tumor tissues. Collectively, the present results provide new insights into the antitumor mechanism of curcumol, identifying it as an attractive therapeutic agent that reduces Mcl-1 expression and inhibits OSCC growth. Targeting EGFR/Akt/Mcl-1 signaling could be a promising option in the clinical treatment of OSCC.</p>\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1142/S0192415X23500350\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1142/S0192415X23500350","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Curcumol Exerts Antitumor Effect via Inhibiting EGFR-Akt-Mcl-1 Signaling.
Dysfunction of epidermal growth factor receptor (EGFR) signaling plays a critical role in the tumorigenesis of oral squamous cell carcinoma (OSCC). In the present study, the data analysis results of immunohistochemistry and the TCGA database verified that the expression of EGFR is significantly upregulated in OSCC tumor tissues, and depletion of EGFR inhibits the growth of OSCC cells in vitro and in vivo. Moreover, these results showed that the natural compound, curcumol, exhibited a profound antitumor effect on OSCC cells. Western blotting, MTS, and immunofluorescent staining assays indicated that curcumol inhibited cell proliferation and induced intrinsic apoptosis in OSCC cells via downregulating myeloid cell leukemia 1 (Mcl-1). A mechanistic study revealed that curcumol inhibited the EGFR-Akt signal pathway, which activated GSK-3[Formula: see text]-mediated Mcl-1 phosphorylation. Further research showed that curcumol-induced Mcl-1 Ser159 phosphorylation is required to disrupt the interaction between deubiquitinase JOSD1 and Mcl-1 and eventually induce Mcl-1 ubiquitination and degradation. In addition, curcumol administration can effectively inhibit CAL27 and SCC25 xenograft tumor growth and is well-tolerated in vivo. Finally, we demonstrated that Mcl-1 is upregulated and positively correlates with p-EGFR and p-Akt in OSCC tumor tissues. Collectively, the present results provide new insights into the antitumor mechanism of curcumol, identifying it as an attractive therapeutic agent that reduces Mcl-1 expression and inhibits OSCC growth. Targeting EGFR/Akt/Mcl-1 signaling could be a promising option in the clinical treatment of OSCC.
期刊介绍:
ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.