探索作为神经疗法的莱菔硫烷:针对 ASD 中 Nrf2-Keap 和 Nf-Kb 通路的串扰。

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
ACS Applied Electronic Materials Pub Date : 2024-03-01 Epub Date: 2023-05-30 DOI:10.1007/s11011-023-01224-4
Ali Shah, Manasi Varma, Ranjana Bhandari
{"title":"探索作为神经疗法的莱菔硫烷:针对 ASD 中 Nrf2-Keap 和 Nf-Kb 通路的串扰。","authors":"Ali Shah, Manasi Varma, Ranjana Bhandari","doi":"10.1007/s11011-023-01224-4","DOIUrl":null,"url":null,"abstract":"<p><p>Autism spectrum disorders (ASD) are a family of complex neurodevelopmental disorders, characterized mainly through deficits in social behavior and communication. While the causes giving rise to autistic symptoms are numerous and varied, the treatment options and therapeutic avenues are still severely limited. Nevertheless, a number of signalling pathways have been implicated in the pathogenesis of the disease, and targeting these pathways might provide insight into potential treatments and future strategies. Importantly, alterations in inflammation, oxidative stress, and mitochondrial dysfunction have been noted in the brains of ASD patients, and among the pathways involved in these processes is the Nrf2 cascade. This particular pathway has been hypothesized to be involved in inducing both, inflammatory and anti-inflammatory/neuroprotective effects in the brain, sparking an interest in its use in ASD. Sulforaphane, a sulfur-containing phytochemical present mainly in cruciferous plants like broccoli and cabbage, has shown efficacy in activating the Nrf2 signaling pathway, which in turn brings about a protective effect on neuronal cells, especially against mitochondrial dysfunction. Its efficacy against ASD has not yet been evaluated, and in this paper, we attempt to discuss the therapeutic potential of this agent in the therapy of autism, with special emphasis on the role of the Nrf2 pathway in the disorder.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring sulforaphane as neurotherapeutic: targeting Nrf2-Keap & Nf-Kb pathway crosstalk in ASD.\",\"authors\":\"Ali Shah, Manasi Varma, Ranjana Bhandari\",\"doi\":\"10.1007/s11011-023-01224-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Autism spectrum disorders (ASD) are a family of complex neurodevelopmental disorders, characterized mainly through deficits in social behavior and communication. While the causes giving rise to autistic symptoms are numerous and varied, the treatment options and therapeutic avenues are still severely limited. Nevertheless, a number of signalling pathways have been implicated in the pathogenesis of the disease, and targeting these pathways might provide insight into potential treatments and future strategies. Importantly, alterations in inflammation, oxidative stress, and mitochondrial dysfunction have been noted in the brains of ASD patients, and among the pathways involved in these processes is the Nrf2 cascade. This particular pathway has been hypothesized to be involved in inducing both, inflammatory and anti-inflammatory/neuroprotective effects in the brain, sparking an interest in its use in ASD. Sulforaphane, a sulfur-containing phytochemical present mainly in cruciferous plants like broccoli and cabbage, has shown efficacy in activating the Nrf2 signaling pathway, which in turn brings about a protective effect on neuronal cells, especially against mitochondrial dysfunction. Its efficacy against ASD has not yet been evaluated, and in this paper, we attempt to discuss the therapeutic potential of this agent in the therapy of autism, with special emphasis on the role of the Nrf2 pathway in the disorder.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s11011-023-01224-4\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/5/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11011-023-01224-4","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/5/30 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

自闭症谱系障碍(ASD)是一系列复杂的神经发育障碍,主要表现为社交行为和沟通障碍。虽然导致自闭症症状的原因多种多样,但治疗方案和治疗途径仍然非常有限。然而,许多信号通路都与自闭症的发病机制有关,针对这些通路的研究可能会为潜在的治疗方法和未来的策略提供启示。重要的是,在 ASD 患者的大脑中发现了炎症、氧化应激和线粒体功能障碍的改变,而 Nrf2 级联是参与这些过程的途径之一。据推测,这种特殊的途径可同时诱导大脑中的炎症反应和抗炎/神经保护作用,从而引发了将其用于治疗 ASD 的兴趣。西兰花苷(Sulforaphane)是一种含硫植物化学物质,主要存在于西兰花和卷心菜等十字花科植物中,具有激活 Nrf2 信号通路的功效,进而对神经细胞产生保护作用,特别是防止线粒体功能障碍。本文试图讨论这种药物在治疗自闭症方面的潜力,并特别强调 Nrf2 通路在自闭症中的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploring sulforaphane as neurotherapeutic: targeting Nrf2-Keap & Nf-Kb pathway crosstalk in ASD.

Autism spectrum disorders (ASD) are a family of complex neurodevelopmental disorders, characterized mainly through deficits in social behavior and communication. While the causes giving rise to autistic symptoms are numerous and varied, the treatment options and therapeutic avenues are still severely limited. Nevertheless, a number of signalling pathways have been implicated in the pathogenesis of the disease, and targeting these pathways might provide insight into potential treatments and future strategies. Importantly, alterations in inflammation, oxidative stress, and mitochondrial dysfunction have been noted in the brains of ASD patients, and among the pathways involved in these processes is the Nrf2 cascade. This particular pathway has been hypothesized to be involved in inducing both, inflammatory and anti-inflammatory/neuroprotective effects in the brain, sparking an interest in its use in ASD. Sulforaphane, a sulfur-containing phytochemical present mainly in cruciferous plants like broccoli and cabbage, has shown efficacy in activating the Nrf2 signaling pathway, which in turn brings about a protective effect on neuronal cells, especially against mitochondrial dysfunction. Its efficacy against ASD has not yet been evaluated, and in this paper, we attempt to discuss the therapeutic potential of this agent in the therapy of autism, with special emphasis on the role of the Nrf2 pathway in the disorder.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信