Klairton Lima Brito, Andre Rodrigues Oliveira, Alexsandro Oliveira Alexandrino, Ulisses Dias, Zanoni Dias
{"title":"在有符号排列和无符号排列上,重排与反转、索引和基因间区域移动的距离。","authors":"Klairton Lima Brito, Andre Rodrigues Oliveira, Alexsandro Oliveira Alexandrino, Ulisses Dias, Zanoni Dias","doi":"10.1142/S0219720023500099","DOIUrl":null,"url":null,"abstract":"<p><p>Genome rearrangement events are widely used to estimate a minimum-size sequence of mutations capable of transforming a genome into another. The length of this sequence is called distance, and determining it is the main goal in genome rearrangement distance problems. Problems in the genome rearrangement field differ regarding the set of rearrangement events allowed and the genome representation. In this work, we consider the scenario where the genomes share the same set of genes, gene orientation is known or unknown, and intergenic regions (structures between a pair of genes and at the extremities of the genome) are taken into account. We use two models, the first model allows only conservative events (reversals and moves), and the second model includes non-conservative events (insertions and deletions) in the intergenic regions. We show that both models result in NP-hard problems no matter if gene orientation is known or unknown. When the information regarding the orientation of genes is available, we present for both models an approximation algorithm with a factor of 2. For the scenario where this information is unavailable, we propose a 4-approximation algorithm for both models.</p>","PeriodicalId":48910,"journal":{"name":"Journal of Bioinformatics and Computational Biology","volume":"21 2","pages":"2350009"},"PeriodicalIF":0.9000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rearrangement distance with reversals, indels, and moves in intergenic regions on signed and unsigned permutations.\",\"authors\":\"Klairton Lima Brito, Andre Rodrigues Oliveira, Alexsandro Oliveira Alexandrino, Ulisses Dias, Zanoni Dias\",\"doi\":\"10.1142/S0219720023500099\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Genome rearrangement events are widely used to estimate a minimum-size sequence of mutations capable of transforming a genome into another. The length of this sequence is called distance, and determining it is the main goal in genome rearrangement distance problems. Problems in the genome rearrangement field differ regarding the set of rearrangement events allowed and the genome representation. In this work, we consider the scenario where the genomes share the same set of genes, gene orientation is known or unknown, and intergenic regions (structures between a pair of genes and at the extremities of the genome) are taken into account. We use two models, the first model allows only conservative events (reversals and moves), and the second model includes non-conservative events (insertions and deletions) in the intergenic regions. We show that both models result in NP-hard problems no matter if gene orientation is known or unknown. When the information regarding the orientation of genes is available, we present for both models an approximation algorithm with a factor of 2. For the scenario where this information is unavailable, we propose a 4-approximation algorithm for both models.</p>\",\"PeriodicalId\":48910,\"journal\":{\"name\":\"Journal of Bioinformatics and Computational Biology\",\"volume\":\"21 2\",\"pages\":\"2350009\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Bioinformatics and Computational Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1142/S0219720023500099\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bioinformatics and Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1142/S0219720023500099","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
Rearrangement distance with reversals, indels, and moves in intergenic regions on signed and unsigned permutations.
Genome rearrangement events are widely used to estimate a minimum-size sequence of mutations capable of transforming a genome into another. The length of this sequence is called distance, and determining it is the main goal in genome rearrangement distance problems. Problems in the genome rearrangement field differ regarding the set of rearrangement events allowed and the genome representation. In this work, we consider the scenario where the genomes share the same set of genes, gene orientation is known or unknown, and intergenic regions (structures between a pair of genes and at the extremities of the genome) are taken into account. We use two models, the first model allows only conservative events (reversals and moves), and the second model includes non-conservative events (insertions and deletions) in the intergenic regions. We show that both models result in NP-hard problems no matter if gene orientation is known or unknown. When the information regarding the orientation of genes is available, we present for both models an approximation algorithm with a factor of 2. For the scenario where this information is unavailable, we propose a 4-approximation algorithm for both models.
期刊介绍:
The Journal of Bioinformatics and Computational Biology aims to publish high quality, original research articles, expository tutorial papers and review papers as well as short, critical comments on technical issues associated with the analysis of cellular information.
The research papers will be technical presentations of new assertions, discoveries and tools, intended for a narrower specialist community. The tutorials, reviews and critical commentary will be targeted at a broader readership of biologists who are interested in using computers but are not knowledgeable about scientific computing, and equally, computer scientists who have an interest in biology but are not familiar with current thrusts nor the language of biology. Such carefully chosen tutorials and articles should greatly accelerate the rate of entry of these new creative scientists into the field.