{"title":"典型的连续分数展开中的素数。","authors":"Tanja I Schindler, Roland Zweimüller","doi":"10.1007/s40574-023-00349-9","DOIUrl":null,"url":null,"abstract":"<p><p>We study, from the viewpoint of metrical number theory and (infinite) ergodic theory, the probabilistic laws governing the occurrence of prime numbers as digits in continued fraction expansions of real numbers.</p>","PeriodicalId":72440,"journal":{"name":"Bollettino della Unione matematica italiana (2008)","volume":"16 2","pages":"259-274"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10203034/pdf/","citationCount":"0","resultStr":"{\"title\":\"Prime numbers in typical continued fraction expansions.\",\"authors\":\"Tanja I Schindler, Roland Zweimüller\",\"doi\":\"10.1007/s40574-023-00349-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We study, from the viewpoint of metrical number theory and (infinite) ergodic theory, the probabilistic laws governing the occurrence of prime numbers as digits in continued fraction expansions of real numbers.</p>\",\"PeriodicalId\":72440,\"journal\":{\"name\":\"Bollettino della Unione matematica italiana (2008)\",\"volume\":\"16 2\",\"pages\":\"259-274\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10203034/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bollettino della Unione matematica italiana (2008)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s40574-023-00349-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/2/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bollettino della Unione matematica italiana (2008)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40574-023-00349-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/2/28 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Prime numbers in typical continued fraction expansions.
We study, from the viewpoint of metrical number theory and (infinite) ergodic theory, the probabilistic laws governing the occurrence of prime numbers as digits in continued fraction expansions of real numbers.