牛磺酸在各种治疗中的生物学作用和机制。

Q3 Pharmacology, Toxicology and Pharmaceutics
Shikha Sharma, Biswa Mohan Sahoo, Bimal Krishna Banik
{"title":"牛磺酸在各种治疗中的生物学作用和机制。","authors":"Shikha Sharma,&nbsp;Biswa Mohan Sahoo,&nbsp;Bimal Krishna Banik","doi":"10.2174/1570163820666230525101353","DOIUrl":null,"url":null,"abstract":"<p><p>More than two hundred years ago, taurine was first isolated from materials derived from animals. It is abundantly found in a wide range of mammalian and non-mammalian tissues and diverse environments. Taurine was discovered to be a by-product of the metabolism of sulfur only a little over a century and a half ago. Recently, there has been a renewed academic interest in researching and exploring various uses of the amino acid taurine, and recent research has indicated that it may be useful in the treatment of a variety of disorders, including seizures, high blood pressure, cardiac infarction, neurodegeneration, and diabetes. Taurine is currently authorised for the therapy of congestive heart failure in Japan, and it has shown promising results in the management of several other illnesses as well. Moreover, it was found to be effective in some clinical trials, and hence it was patented for the same. This review compiles the research data that supports the prospective usage of taurine as an antibacterial, antioxidant, anti-inflammatory, diabetic, retinal protective, and membrane stabilizing agent, amongst other applications.</p>","PeriodicalId":10858,"journal":{"name":"Current drug discovery technologies","volume":" ","pages":"60-78"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Biological Effects and Mechanisms of Taurine in Various Therapeutics.\",\"authors\":\"Shikha Sharma,&nbsp;Biswa Mohan Sahoo,&nbsp;Bimal Krishna Banik\",\"doi\":\"10.2174/1570163820666230525101353\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>More than two hundred years ago, taurine was first isolated from materials derived from animals. It is abundantly found in a wide range of mammalian and non-mammalian tissues and diverse environments. Taurine was discovered to be a by-product of the metabolism of sulfur only a little over a century and a half ago. Recently, there has been a renewed academic interest in researching and exploring various uses of the amino acid taurine, and recent research has indicated that it may be useful in the treatment of a variety of disorders, including seizures, high blood pressure, cardiac infarction, neurodegeneration, and diabetes. Taurine is currently authorised for the therapy of congestive heart failure in Japan, and it has shown promising results in the management of several other illnesses as well. Moreover, it was found to be effective in some clinical trials, and hence it was patented for the same. This review compiles the research data that supports the prospective usage of taurine as an antibacterial, antioxidant, anti-inflammatory, diabetic, retinal protective, and membrane stabilizing agent, amongst other applications.</p>\",\"PeriodicalId\":10858,\"journal\":{\"name\":\"Current drug discovery technologies\",\"volume\":\" \",\"pages\":\"60-78\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current drug discovery technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/1570163820666230525101353\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Pharmacology, Toxicology and Pharmaceutics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current drug discovery technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/1570163820666230525101353","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 2

摘要

200多年前,牛磺酸首次从动物来源的物质中分离出来。它广泛存在于哺乳动物和非哺乳动物的组织和不同的环境中。一个半世纪前,人们才发现牛磺酸是硫代谢的副产物。最近,学术界对研究和探索氨基酸牛磺酸的各种用途重新产生了兴趣,最近的研究表明,它可能用于治疗各种疾病,包括癫痫发作、高血压、心肌梗死、神经退行性变和糖尿病。牛磺酸目前在日本被授权用于治疗充血性心力衰竭,它在治疗其他几种疾病方面也显示出了良好的效果。此外,它在一些临床试验中被发现是有效的,因此它也获得了专利。这篇综述汇编了支持牛磺酸作为抗菌、抗氧化剂、抗炎、糖尿病、视网膜保护剂和膜稳定剂等应用的研究数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Biological Effects and Mechanisms of Taurine in Various Therapeutics.

More than two hundred years ago, taurine was first isolated from materials derived from animals. It is abundantly found in a wide range of mammalian and non-mammalian tissues and diverse environments. Taurine was discovered to be a by-product of the metabolism of sulfur only a little over a century and a half ago. Recently, there has been a renewed academic interest in researching and exploring various uses of the amino acid taurine, and recent research has indicated that it may be useful in the treatment of a variety of disorders, including seizures, high blood pressure, cardiac infarction, neurodegeneration, and diabetes. Taurine is currently authorised for the therapy of congestive heart failure in Japan, and it has shown promising results in the management of several other illnesses as well. Moreover, it was found to be effective in some clinical trials, and hence it was patented for the same. This review compiles the research data that supports the prospective usage of taurine as an antibacterial, antioxidant, anti-inflammatory, diabetic, retinal protective, and membrane stabilizing agent, amongst other applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current drug discovery technologies
Current drug discovery technologies Pharmacology, Toxicology and Pharmaceutics-Drug Discovery
CiteScore
3.70
自引率
0.00%
发文量
48
期刊介绍: Due to the plethora of new approaches being used in modern drug discovery by the pharmaceutical industry, Current Drug Discovery Technologies has been established to provide comprehensive overviews of all the major modern techniques and technologies used in drug design and discovery. The journal is the forum for publishing both original research papers and reviews describing novel approaches and cutting edge technologies used in all stages of drug discovery. The journal addresses the multidimensional challenges of drug discovery science including integration issues of the drug discovery process.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信