中文新浪微博的话题阅读动态

Q1 Mathematics
Fulian Yin , Jiale Wu , Xueying Shao , Jianhong Wu
{"title":"中文新浪微博的话题阅读动态","authors":"Fulian Yin ,&nbsp;Jiale Wu ,&nbsp;Xueying Shao ,&nbsp;Jianhong Wu","doi":"10.1016/j.csfx.2020.100031","DOIUrl":null,"url":null,"abstract":"<div><p>A topic in the Sina-Microblog consists of multiple Weibos sharing a specific set of key words. Therefore, a reader of a Weibo may be susceptible to other Weibos of the same topic, and hence may undergo multiple transitions between the susceptible and the exposed states before eventually becoming infectious. This complicates the reading dynamics that traditional epidemic susceptible-exposed-infectious compartmental models cannot capture, and requires a different setting than a single Weibo forwarding dynamics model. Here we formulate a topic reading dynamics model; introduce some summative indices characterizing the reading “outbreak” potential; derive analytic formulae to calculate these indices; and examine the sensitivity of these indices and the ability of prediction on model parameters and on sampling frequencies. We conduct some numerical experiments based on historical data of popular reading topics in the Chinese Sina-Microblog. In our experiments, different sampling frequencies (4 h, 8 h or 12 h) nearcasting the turning points are feasible, in particular, a good nearcasting prediction for the accumulated R-users are 72 h with the sampling frequencies of every 4 h and every 12 h and 78 h with the sampling frequency of every 8 h.</p></div>","PeriodicalId":37147,"journal":{"name":"Chaos, Solitons and Fractals: X","volume":"5 ","pages":"Article 100031"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.csfx.2020.100031","citationCount":"3","resultStr":"{\"title\":\"Topic reading dynamics of the Chinese Sina-Microblog\",\"authors\":\"Fulian Yin ,&nbsp;Jiale Wu ,&nbsp;Xueying Shao ,&nbsp;Jianhong Wu\",\"doi\":\"10.1016/j.csfx.2020.100031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A topic in the Sina-Microblog consists of multiple Weibos sharing a specific set of key words. Therefore, a reader of a Weibo may be susceptible to other Weibos of the same topic, and hence may undergo multiple transitions between the susceptible and the exposed states before eventually becoming infectious. This complicates the reading dynamics that traditional epidemic susceptible-exposed-infectious compartmental models cannot capture, and requires a different setting than a single Weibo forwarding dynamics model. Here we formulate a topic reading dynamics model; introduce some summative indices characterizing the reading “outbreak” potential; derive analytic formulae to calculate these indices; and examine the sensitivity of these indices and the ability of prediction on model parameters and on sampling frequencies. We conduct some numerical experiments based on historical data of popular reading topics in the Chinese Sina-Microblog. In our experiments, different sampling frequencies (4 h, 8 h or 12 h) nearcasting the turning points are feasible, in particular, a good nearcasting prediction for the accumulated R-users are 72 h with the sampling frequencies of every 4 h and every 12 h and 78 h with the sampling frequency of every 8 h.</p></div>\",\"PeriodicalId\":37147,\"journal\":{\"name\":\"Chaos, Solitons and Fractals: X\",\"volume\":\"5 \",\"pages\":\"Article 100031\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.csfx.2020.100031\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos, Solitons and Fractals: X\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590054420300129\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos, Solitons and Fractals: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590054420300129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 3

摘要

新浪微博中的一个话题由多个微博组成,这些微博共享一组特定的关键词。因此,一个微博的读者可能会受到同一话题的其他微博的影响,因此可能会在易感状态和暴露状态之间经历多次转变,最终感染。这使得传统的流行病易感-暴露-感染区隔模型无法捕捉的阅读动态变得复杂,并且需要与单一微博转发动态模型不同的设置。在此,我们建立了一个话题阅读动态模型;介绍了表征读数“爆发”潜力的一些总结性指标;推导出计算这些指标的解析公式;并检验了这些指标对模型参数和采样频率的敏感性和预测能力。我们基于中文新浪微博热门阅读话题的历史数据进行了一些数值实验。在我们的实验中,不同的采样频率(4 h、8 h或12 h)都可以接近转折点,特别是对累积r -用户的较好的接近预测是72 h,每4 h采样一次,每12 h采样一次,每8 h采样一次。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Topic reading dynamics of the Chinese Sina-Microblog

A topic in the Sina-Microblog consists of multiple Weibos sharing a specific set of key words. Therefore, a reader of a Weibo may be susceptible to other Weibos of the same topic, and hence may undergo multiple transitions between the susceptible and the exposed states before eventually becoming infectious. This complicates the reading dynamics that traditional epidemic susceptible-exposed-infectious compartmental models cannot capture, and requires a different setting than a single Weibo forwarding dynamics model. Here we formulate a topic reading dynamics model; introduce some summative indices characterizing the reading “outbreak” potential; derive analytic formulae to calculate these indices; and examine the sensitivity of these indices and the ability of prediction on model parameters and on sampling frequencies. We conduct some numerical experiments based on historical data of popular reading topics in the Chinese Sina-Microblog. In our experiments, different sampling frequencies (4 h, 8 h or 12 h) nearcasting the turning points are feasible, in particular, a good nearcasting prediction for the accumulated R-users are 72 h with the sampling frequencies of every 4 h and every 12 h and 78 h with the sampling frequency of every 8 h.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos, Solitons and Fractals: X
Chaos, Solitons and Fractals: X Mathematics-Mathematics (all)
CiteScore
5.00
自引率
0.00%
发文量
15
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信