电子显微镜图像中轴突和髓鞘的元学习分割。

Nguyen P Nguyen, Stephanie Lopez, Catherine L Smith, Teresa E Lever, Nicole L Nichols, Filiz Bunyak
{"title":"电子显微镜图像中轴突和髓鞘的元学习分割。","authors":"Nguyen P Nguyen,&nbsp;Stephanie Lopez,&nbsp;Catherine L Smith,&nbsp;Teresa E Lever,&nbsp;Nicole L Nichols,&nbsp;Filiz Bunyak","doi":"10.1109/aipr57179.2022.10092238","DOIUrl":null,"url":null,"abstract":"<p><p>Various neurological diseases affect the morphology of myelinated axons. Quantitative analysis of these structures and changes occurring due to neurodegeneration or neuroregeneration is of great importance for characterization of disease state and treatment response. This paper proposes a robust, meta-learning based pipeline for segmentation of axons and surrounding myelin sheaths in electron microscopy images. This is the first step towards computation of electron microscopy related bio-markers of hypoglossal nerve degeneration/regeneration. This segmentation task is challenging due to large variations in morphology and texture of myelinated axons at different levels of degeneration and very limited availability of annotated data. To overcome these difficulties, the proposed pipeline uses a meta learning-based training strategy and a U-net like encoder decoder deep neural network. Experiments on unseen test data collected at different magnification levels (i.e, trained on 500X and 1200X images, and tested on 250X and 2500X images) showed improved segmentation performance by 5% to 7% compared to a regularly trained, comparable deep learning network.</p>","PeriodicalId":73278,"journal":{"name":"IEEE Applied Imagery Pattern Recognition Workshop : [proceedings]. IEEE Applied Imagery Pattern Recognition Workshop","volume":"2022 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10197949/pdf/nihms-1895752.pdf","citationCount":"1","resultStr":"{\"title\":\"Axon and Myelin Sheath Segmentation in Electron Microscopy Images using Meta Learning.\",\"authors\":\"Nguyen P Nguyen,&nbsp;Stephanie Lopez,&nbsp;Catherine L Smith,&nbsp;Teresa E Lever,&nbsp;Nicole L Nichols,&nbsp;Filiz Bunyak\",\"doi\":\"10.1109/aipr57179.2022.10092238\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Various neurological diseases affect the morphology of myelinated axons. Quantitative analysis of these structures and changes occurring due to neurodegeneration or neuroregeneration is of great importance for characterization of disease state and treatment response. This paper proposes a robust, meta-learning based pipeline for segmentation of axons and surrounding myelin sheaths in electron microscopy images. This is the first step towards computation of electron microscopy related bio-markers of hypoglossal nerve degeneration/regeneration. This segmentation task is challenging due to large variations in morphology and texture of myelinated axons at different levels of degeneration and very limited availability of annotated data. To overcome these difficulties, the proposed pipeline uses a meta learning-based training strategy and a U-net like encoder decoder deep neural network. Experiments on unseen test data collected at different magnification levels (i.e, trained on 500X and 1200X images, and tested on 250X and 2500X images) showed improved segmentation performance by 5% to 7% compared to a regularly trained, comparable deep learning network.</p>\",\"PeriodicalId\":73278,\"journal\":{\"name\":\"IEEE Applied Imagery Pattern Recognition Workshop : [proceedings]. IEEE Applied Imagery Pattern Recognition Workshop\",\"volume\":\"2022 \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10197949/pdf/nihms-1895752.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Applied Imagery Pattern Recognition Workshop : [proceedings]. IEEE Applied Imagery Pattern Recognition Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/aipr57179.2022.10092238\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Applied Imagery Pattern Recognition Workshop : [proceedings]. IEEE Applied Imagery Pattern Recognition Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/aipr57179.2022.10092238","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

多种神经系统疾病影响髓系轴突的形态。定量分析这些结构和由于神经变性或神经再生而发生的变化对于表征疾病状态和治疗反应具有重要意义。本文提出了一种鲁棒的、基于元学习的管道,用于电子显微镜图像中轴突和周围髓鞘的分割。这是计算舌下神经退化/再生的电子显微镜相关生物标志物的第一步。由于不同程度退化的髓鞘轴突的形态和质地存在很大差异,并且注释数据的可用性非常有限,因此分割任务具有挑战性。为了克服这些困难,提出的管道使用基于元学习的训练策略和类似U-net的编码器解码器深度神经网络。在不同放大率下收集的未见过的测试数据上进行的实验(即在500X和1200X图像上进行训练,在250X和2500X图像上进行测试)表明,与常规训练的可比深度学习网络相比,分割性能提高了5%到7%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Axon and Myelin Sheath Segmentation in Electron Microscopy Images using Meta Learning.

Various neurological diseases affect the morphology of myelinated axons. Quantitative analysis of these structures and changes occurring due to neurodegeneration or neuroregeneration is of great importance for characterization of disease state and treatment response. This paper proposes a robust, meta-learning based pipeline for segmentation of axons and surrounding myelin sheaths in electron microscopy images. This is the first step towards computation of electron microscopy related bio-markers of hypoglossal nerve degeneration/regeneration. This segmentation task is challenging due to large variations in morphology and texture of myelinated axons at different levels of degeneration and very limited availability of annotated data. To overcome these difficulties, the proposed pipeline uses a meta learning-based training strategy and a U-net like encoder decoder deep neural network. Experiments on unseen test data collected at different magnification levels (i.e, trained on 500X and 1200X images, and tested on 250X and 2500X images) showed improved segmentation performance by 5% to 7% compared to a regularly trained, comparable deep learning network.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信