{"title":"神经振荡开始时的双稳性。","authors":"Yiqing Lu, Xiu Xin, John Rinzel","doi":"10.1007/s00422-022-00954-5","DOIUrl":null,"url":null,"abstract":"<p><p>The Hodgkin-Huxley (HH) model and squid axon (bathed in reduced Ca<sup>2+</sup>) fire repetitively for steady current injection. Moreover, for a current-range just suprathreshold, repetitive firing coexists with a stable steady state. Neuronal excitability, as such, shows bistability and hysteresis providing the opportunity for the system to perform as switchable between firing and non-firing states with transient input and providing the backbone as a dynamical mechanism for bursting oscillations. Some conditions for bistability can be derived by intricate analysis (bifurcation theory) and characterized by simulation, but conditions for emergence and robustness of such bistability do not typically follow from intuition. Here, we demonstrate with a semi-quantitative two-variable, V-w, reduction of the HH model features that promote/reduce bistability. Visualization of flow and trajectories in the V-w phase plane provides an intuitive grasp for bistability. The geometry of action potential recovery involves a late phase during which the dynamic negative feedback of [Formula: see text] inactivation and [Formula: see text] activation over/undershoot, respectively, their resting values, thereby leading to hyperexcitabilty and an intrinsically generated opportunity to by-pass the spiral-like stable rest state and initiate the next spike upstroke. We illustrate control of bistability and dependence of the degree of hysteresis on recovery timescales and gating properties. Our dynamical dissection reveals the strongly attracting depolarized phase of the spike, enabling approximations like the resetting feature of adapting integrate-and-fire models. We extend our insights and show that the Morris-Lecar model can also exhibit robust bistability.</p>","PeriodicalId":55374,"journal":{"name":"Biological Cybernetics","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Bistability at the onset of neuronal oscillations.\",\"authors\":\"Yiqing Lu, Xiu Xin, John Rinzel\",\"doi\":\"10.1007/s00422-022-00954-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The Hodgkin-Huxley (HH) model and squid axon (bathed in reduced Ca<sup>2+</sup>) fire repetitively for steady current injection. Moreover, for a current-range just suprathreshold, repetitive firing coexists with a stable steady state. Neuronal excitability, as such, shows bistability and hysteresis providing the opportunity for the system to perform as switchable between firing and non-firing states with transient input and providing the backbone as a dynamical mechanism for bursting oscillations. Some conditions for bistability can be derived by intricate analysis (bifurcation theory) and characterized by simulation, but conditions for emergence and robustness of such bistability do not typically follow from intuition. Here, we demonstrate with a semi-quantitative two-variable, V-w, reduction of the HH model features that promote/reduce bistability. Visualization of flow and trajectories in the V-w phase plane provides an intuitive grasp for bistability. The geometry of action potential recovery involves a late phase during which the dynamic negative feedback of [Formula: see text] inactivation and [Formula: see text] activation over/undershoot, respectively, their resting values, thereby leading to hyperexcitabilty and an intrinsically generated opportunity to by-pass the spiral-like stable rest state and initiate the next spike upstroke. We illustrate control of bistability and dependence of the degree of hysteresis on recovery timescales and gating properties. Our dynamical dissection reveals the strongly attracting depolarized phase of the spike, enabling approximations like the resetting feature of adapting integrate-and-fire models. We extend our insights and show that the Morris-Lecar model can also exhibit robust bistability.</p>\",\"PeriodicalId\":55374,\"journal\":{\"name\":\"Biological Cybernetics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biological Cybernetics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s00422-022-00954-5\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, CYBERNETICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Cybernetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00422-022-00954-5","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, CYBERNETICS","Score":null,"Total":0}
Bistability at the onset of neuronal oscillations.
The Hodgkin-Huxley (HH) model and squid axon (bathed in reduced Ca2+) fire repetitively for steady current injection. Moreover, for a current-range just suprathreshold, repetitive firing coexists with a stable steady state. Neuronal excitability, as such, shows bistability and hysteresis providing the opportunity for the system to perform as switchable between firing and non-firing states with transient input and providing the backbone as a dynamical mechanism for bursting oscillations. Some conditions for bistability can be derived by intricate analysis (bifurcation theory) and characterized by simulation, but conditions for emergence and robustness of such bistability do not typically follow from intuition. Here, we demonstrate with a semi-quantitative two-variable, V-w, reduction of the HH model features that promote/reduce bistability. Visualization of flow and trajectories in the V-w phase plane provides an intuitive grasp for bistability. The geometry of action potential recovery involves a late phase during which the dynamic negative feedback of [Formula: see text] inactivation and [Formula: see text] activation over/undershoot, respectively, their resting values, thereby leading to hyperexcitabilty and an intrinsically generated opportunity to by-pass the spiral-like stable rest state and initiate the next spike upstroke. We illustrate control of bistability and dependence of the degree of hysteresis on recovery timescales and gating properties. Our dynamical dissection reveals the strongly attracting depolarized phase of the spike, enabling approximations like the resetting feature of adapting integrate-and-fire models. We extend our insights and show that the Morris-Lecar model can also exhibit robust bistability.
期刊介绍:
Biological Cybernetics is an interdisciplinary medium for theoretical and application-oriented aspects of information processing in organisms, including sensory, motor, cognitive, and ecological phenomena. Topics covered include: mathematical modeling of biological systems; computational, theoretical or engineering studies with relevance for understanding biological information processing; and artificial implementation of biological information processing and self-organizing principles. Under the main aspects of performance and function of systems, emphasis is laid on communication between life sciences and technical/theoretical disciplines.