血脑屏障外排转运蛋白p -糖蛋白在药物发现中的作用

IF 1.7 4区 医学 Q3 PHARMACOLOGY & PHARMACY
Benoit Cox, Johan Nicolaï, Beth Williamson
{"title":"血脑屏障外排转运蛋白p -糖蛋白在药物发现中的作用","authors":"Benoit Cox,&nbsp;Johan Nicolaï,&nbsp;Beth Williamson","doi":"10.1002/bdd.2331","DOIUrl":null,"url":null,"abstract":"<p>The blood–brain barrier (BBB) expresses a high abundance of transporters, particularly P-glycoprotein (P-gp), that regulate endogenous and exogenous molecule uptake and removal of waste. This review discusses key drug metabolism and pharmacokinetic considerations for the efflux transporter P-gp at the BBB in drug discovery and development. We highlight the differences in P-gp expression and protein levels across species but the limited observations of species-specific substrates. Given the impact of age and disease on BBB biology, we summarise the modulation of P-gp for several neurological disorders and ageing and exemplify several disease-specific hurdles or opportunities for drug exposure in the brain. Furthermore, the review includes observations of CNS-related drug-drug interactions due to the inhibition or induction of P-gp at the BBB in animal studies and humans and the need for continued evaluation especially for compounds with a narrow therapeutic window. This review focusses primarily on small molecules but also considers the impact of new chemical entities, particularly beyond Ro5 molecules and their potential to be recognised as P-gp substrates as well as advanced drug delivery systems which offer an alternative approach to achieve and sustain central nervous system exposure.</p>","PeriodicalId":8865,"journal":{"name":"Biopharmaceutics & Drug Disposition","volume":"44 1","pages":"113-126"},"PeriodicalIF":1.7000,"publicationDate":"2022-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The role of the efflux transporter, P-glycoprotein, at the blood–brain barrier in drug discovery\",\"authors\":\"Benoit Cox,&nbsp;Johan Nicolaï,&nbsp;Beth Williamson\",\"doi\":\"10.1002/bdd.2331\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The blood–brain barrier (BBB) expresses a high abundance of transporters, particularly P-glycoprotein (P-gp), that regulate endogenous and exogenous molecule uptake and removal of waste. This review discusses key drug metabolism and pharmacokinetic considerations for the efflux transporter P-gp at the BBB in drug discovery and development. We highlight the differences in P-gp expression and protein levels across species but the limited observations of species-specific substrates. Given the impact of age and disease on BBB biology, we summarise the modulation of P-gp for several neurological disorders and ageing and exemplify several disease-specific hurdles or opportunities for drug exposure in the brain. Furthermore, the review includes observations of CNS-related drug-drug interactions due to the inhibition or induction of P-gp at the BBB in animal studies and humans and the need for continued evaluation especially for compounds with a narrow therapeutic window. This review focusses primarily on small molecules but also considers the impact of new chemical entities, particularly beyond Ro5 molecules and their potential to be recognised as P-gp substrates as well as advanced drug delivery systems which offer an alternative approach to achieve and sustain central nervous system exposure.</p>\",\"PeriodicalId\":8865,\"journal\":{\"name\":\"Biopharmaceutics & Drug Disposition\",\"volume\":\"44 1\",\"pages\":\"113-126\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2022-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biopharmaceutics & Drug Disposition\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/bdd.2331\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biopharmaceutics & Drug Disposition","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bdd.2331","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 2

摘要

血脑屏障(BBB)表达大量转运蛋白,特别是p -糖蛋白(P-gp),其调节内源性和外源性分子摄取和废物清除。本文综述了血脑屏障外排转运体P-gp在药物发现和开发中的关键药物代谢和药代动力学问题。我们强调了不同物种间P-gp表达和蛋白水平的差异,但对物种特异性底物的观察有限。鉴于年龄和疾病对血脑屏障生物学的影响,我们总结了P-gp对几种神经系统疾病和衰老的调节,并举例说明了大脑中药物暴露的几种疾病特异性障碍或机会。此外,该综述还包括在动物和人类研究中观察到的由于血脑屏障处P-gp的抑制或诱导而导致的中枢神经系统相关的药物-药物相互作用,以及对具有狭窄治疗窗口的化合物进行持续评估的必要性。这篇综述主要集中在小分子,但也考虑了新的化学实体的影响,特别是超越Ro5分子及其被认为是P-gp底物的潜力,以及先进的药物输送系统,提供了一种实现和维持中枢神经系统暴露的替代方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The role of the efflux transporter, P-glycoprotein, at the blood–brain barrier in drug discovery

The role of the efflux transporter, P-glycoprotein, at the blood–brain barrier in drug discovery

The blood–brain barrier (BBB) expresses a high abundance of transporters, particularly P-glycoprotein (P-gp), that regulate endogenous and exogenous molecule uptake and removal of waste. This review discusses key drug metabolism and pharmacokinetic considerations for the efflux transporter P-gp at the BBB in drug discovery and development. We highlight the differences in P-gp expression and protein levels across species but the limited observations of species-specific substrates. Given the impact of age and disease on BBB biology, we summarise the modulation of P-gp for several neurological disorders and ageing and exemplify several disease-specific hurdles or opportunities for drug exposure in the brain. Furthermore, the review includes observations of CNS-related drug-drug interactions due to the inhibition or induction of P-gp at the BBB in animal studies and humans and the need for continued evaluation especially for compounds with a narrow therapeutic window. This review focusses primarily on small molecules but also considers the impact of new chemical entities, particularly beyond Ro5 molecules and their potential to be recognised as P-gp substrates as well as advanced drug delivery systems which offer an alternative approach to achieve and sustain central nervous system exposure.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.60
自引率
0.00%
发文量
35
审稿时长
6-12 weeks
期刊介绍: Biopharmaceutics & Drug Dispositionpublishes original review articles, short communications, and reports in biopharmaceutics, drug disposition, pharmacokinetics and pharmacodynamics, especially those that have a direct relation to the drug discovery/development and the therapeutic use of drugs. These includes: - animal and human pharmacological studies that focus on therapeutic response. pharmacodynamics, and toxicity related to plasma and tissue concentrations of drugs and their metabolites, - in vitro and in vivo drug absorption, distribution, metabolism, transport, and excretion studies that facilitate investigations related to the use of drugs in man - studies on membrane transport and enzymes, including their regulation and the impact of pharmacogenomics on drug absorption and disposition, - simulation and modeling in drug discovery and development - theoretical treatises - includes themed issues and reviews and exclude manuscripts on - bioavailability studies reporting only on simple PK parameters such as Cmax, tmax and t1/2 without mechanistic interpretation - analytical methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信