{"title":"Neuropilin-2通过MiR-331-3p调控级联抑制黑色素瘤的耐药和进展","authors":"Qun Xie, Ruirui Zhang, Dandan Liu, Jing Yang, Qiang Hu, Chao Shan, Xiaohan Li","doi":"10.2174/1874467216666221220111756","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>MicroRNAs (miRs) are small noncoding RNAs that are crucial in the development and progression of tumours. Melanoma is an aggressive form of skin cancer and is resistant to most of the chemotherapeutic agents. However, the role of miRs in melanoma remains poorly studied.</p><p><strong>Objective: </strong>The work aimed to demonstrate that miR-331-3p is downregulated in melanoma against the benign melanocytic nevi.</p><p><strong>Methods: </strong>RT-PCR analysis was performed for the expression of proteins; cell proliferation and wound healing assays were carried out. Flow cytometry study was conducted for cell cycle analysis; colony formation assay was performed by soft agar method. For developing a tumour xenograft model, nu/nu mice were selected.</p><p><strong>Results: </strong>Up-regulation of miR-331-3p in melanoma cells decreased cell proliferation, cell migration, and also drug resistance. Over-expression of miR-331-3p resulted in suppression of NRP2 and up-regulation of E-cadherin levels. Moreover, the levels of MDR1, ABCG-2, and ABCG-5 were decreased. However, the knockdown of NRP2 demonstrated similar effects as that of miR- 331-3p overexpression in tumour cells. Overexpression of miR-331-3p caused significant inhibition of tumour growth and its metastasis in mice model of melanoma, which was associated with depletion of NRP2 protein and increased expression of E-cadherin. However, the effects of miR- 331-3p on the migration, cell proliferation, and self-renewal were overturned by the upregulation of NRP2, which also resulted in the inhibition of E-cadherin and overexpression of MDR-1, ABCG-2, and ABCG-5.</p><p><strong>Conclusion: </strong>The findings point out the key role of miR-331-3p in the progression and drug resistance of melanoma involving NRP2.</p>","PeriodicalId":10865,"journal":{"name":"Current molecular pharmacology","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neuropilin-2 Inhibits Drug Resistance and Progression of Melanoma Involving the MiR-331-3p Regulated Cascade.\",\"authors\":\"Qun Xie, Ruirui Zhang, Dandan Liu, Jing Yang, Qiang Hu, Chao Shan, Xiaohan Li\",\"doi\":\"10.2174/1874467216666221220111756\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>MicroRNAs (miRs) are small noncoding RNAs that are crucial in the development and progression of tumours. Melanoma is an aggressive form of skin cancer and is resistant to most of the chemotherapeutic agents. However, the role of miRs in melanoma remains poorly studied.</p><p><strong>Objective: </strong>The work aimed to demonstrate that miR-331-3p is downregulated in melanoma against the benign melanocytic nevi.</p><p><strong>Methods: </strong>RT-PCR analysis was performed for the expression of proteins; cell proliferation and wound healing assays were carried out. Flow cytometry study was conducted for cell cycle analysis; colony formation assay was performed by soft agar method. For developing a tumour xenograft model, nu/nu mice were selected.</p><p><strong>Results: </strong>Up-regulation of miR-331-3p in melanoma cells decreased cell proliferation, cell migration, and also drug resistance. Over-expression of miR-331-3p resulted in suppression of NRP2 and up-regulation of E-cadherin levels. Moreover, the levels of MDR1, ABCG-2, and ABCG-5 were decreased. However, the knockdown of NRP2 demonstrated similar effects as that of miR- 331-3p overexpression in tumour cells. Overexpression of miR-331-3p caused significant inhibition of tumour growth and its metastasis in mice model of melanoma, which was associated with depletion of NRP2 protein and increased expression of E-cadherin. However, the effects of miR- 331-3p on the migration, cell proliferation, and self-renewal were overturned by the upregulation of NRP2, which also resulted in the inhibition of E-cadherin and overexpression of MDR-1, ABCG-2, and ABCG-5.</p><p><strong>Conclusion: </strong>The findings point out the key role of miR-331-3p in the progression and drug resistance of melanoma involving NRP2.</p>\",\"PeriodicalId\":10865,\"journal\":{\"name\":\"Current molecular pharmacology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current molecular pharmacology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.2174/1874467216666221220111756\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current molecular pharmacology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.2174/1874467216666221220111756","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Neuropilin-2 Inhibits Drug Resistance and Progression of Melanoma Involving the MiR-331-3p Regulated Cascade.
Background: MicroRNAs (miRs) are small noncoding RNAs that are crucial in the development and progression of tumours. Melanoma is an aggressive form of skin cancer and is resistant to most of the chemotherapeutic agents. However, the role of miRs in melanoma remains poorly studied.
Objective: The work aimed to demonstrate that miR-331-3p is downregulated in melanoma against the benign melanocytic nevi.
Methods: RT-PCR analysis was performed for the expression of proteins; cell proliferation and wound healing assays were carried out. Flow cytometry study was conducted for cell cycle analysis; colony formation assay was performed by soft agar method. For developing a tumour xenograft model, nu/nu mice were selected.
Results: Up-regulation of miR-331-3p in melanoma cells decreased cell proliferation, cell migration, and also drug resistance. Over-expression of miR-331-3p resulted in suppression of NRP2 and up-regulation of E-cadherin levels. Moreover, the levels of MDR1, ABCG-2, and ABCG-5 were decreased. However, the knockdown of NRP2 demonstrated similar effects as that of miR- 331-3p overexpression in tumour cells. Overexpression of miR-331-3p caused significant inhibition of tumour growth and its metastasis in mice model of melanoma, which was associated with depletion of NRP2 protein and increased expression of E-cadherin. However, the effects of miR- 331-3p on the migration, cell proliferation, and self-renewal were overturned by the upregulation of NRP2, which also resulted in the inhibition of E-cadherin and overexpression of MDR-1, ABCG-2, and ABCG-5.
Conclusion: The findings point out the key role of miR-331-3p in the progression and drug resistance of melanoma involving NRP2.
期刊介绍:
Current Molecular Pharmacology aims to publish the latest developments in cellular and molecular pharmacology with a major emphasis on the mechanism of action of novel drugs under development, innovative pharmacological technologies, cell signaling, transduction pathway analysis, genomics, proteomics, and metabonomics applications to drug action. An additional focus will be the way in which normal biological function is illuminated by knowledge of the action of drugs at the cellular and molecular level. The journal publishes full-length/mini reviews, original research articles and thematic issues on molecular pharmacology.
Current Molecular Pharmacology is an essential journal for every scientist who is involved in drug design and discovery, target identification, target validation, preclinical and clinical development of drugs therapeutically useful in human disease.