{"title":"特立帕肽可预防DMM小鼠滑膜炎症和软骨破坏。","authors":"Xu Liang, Sen-Rui Li, Xin-Xin Zhang, Shi-Hao He, Shan-Shan Li, Tian-Fang Li","doi":"10.1080/03008207.2022.2157723","DOIUrl":null,"url":null,"abstract":"<p><strong>Aim: </strong>Emerging data have demonstrated that low-grade inflammation in osteoarthritis, a long-held degenerative disease. The inflamed synovium produces various cytokines that induce cartilage destruction and joint pain. A previous study showed that teriparatide, an FDA approved anti-osteoporotic drug, may enhance cartilage repair. Our study focuses on its role in OA synovitis.</p><p><strong>Materials and methods: </strong>Primary mouse articular chondrocytes were used to determine the most potent cytokines involved in OA inflammation and cartilage destruction. A destabilization of the medial meniscus mouse model was established to investigate the effect of teriparatide in OA, particularly, on synovial inflammation and cartilage degradation.</p><p><strong>Results: </strong>In vitro experiments showed that TNF-α was the most potent inducer of cartilage matrix-degrading enzymes, and that teriparatide antagonized the TNF-α of effect. Consistently, articular cartilage samples from TNF-α transgenic mice contained more MMP-13 positive chondrocytes than those from wild type mice. In addition, more type II collagen was cleaved in human OA cartilage than in normal cartilage samples.</p><p><strong>Conclusions: </strong>Teriparatide can prevent synovitis and cartilage degradation by suppressing TNF-α mediated MMP-13 overexpression. Together with its chondroregenerative capability, teriparatide may be the first effective disease modifying osteoarthritis drug.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Teriparatide prevented synovial inflammation and cartilage destruction in mice with DMM.\",\"authors\":\"Xu Liang, Sen-Rui Li, Xin-Xin Zhang, Shi-Hao He, Shan-Shan Li, Tian-Fang Li\",\"doi\":\"10.1080/03008207.2022.2157723\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Aim: </strong>Emerging data have demonstrated that low-grade inflammation in osteoarthritis, a long-held degenerative disease. The inflamed synovium produces various cytokines that induce cartilage destruction and joint pain. A previous study showed that teriparatide, an FDA approved anti-osteoporotic drug, may enhance cartilage repair. Our study focuses on its role in OA synovitis.</p><p><strong>Materials and methods: </strong>Primary mouse articular chondrocytes were used to determine the most potent cytokines involved in OA inflammation and cartilage destruction. A destabilization of the medial meniscus mouse model was established to investigate the effect of teriparatide in OA, particularly, on synovial inflammation and cartilage degradation.</p><p><strong>Results: </strong>In vitro experiments showed that TNF-α was the most potent inducer of cartilage matrix-degrading enzymes, and that teriparatide antagonized the TNF-α of effect. Consistently, articular cartilage samples from TNF-α transgenic mice contained more MMP-13 positive chondrocytes than those from wild type mice. In addition, more type II collagen was cleaved in human OA cartilage than in normal cartilage samples.</p><p><strong>Conclusions: </strong>Teriparatide can prevent synovitis and cartilage degradation by suppressing TNF-α mediated MMP-13 overexpression. Together with its chondroregenerative capability, teriparatide may be the first effective disease modifying osteoarthritis drug.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/03008207.2022.2157723\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/03008207.2022.2157723","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Teriparatide prevented synovial inflammation and cartilage destruction in mice with DMM.
Aim: Emerging data have demonstrated that low-grade inflammation in osteoarthritis, a long-held degenerative disease. The inflamed synovium produces various cytokines that induce cartilage destruction and joint pain. A previous study showed that teriparatide, an FDA approved anti-osteoporotic drug, may enhance cartilage repair. Our study focuses on its role in OA synovitis.
Materials and methods: Primary mouse articular chondrocytes were used to determine the most potent cytokines involved in OA inflammation and cartilage destruction. A destabilization of the medial meniscus mouse model was established to investigate the effect of teriparatide in OA, particularly, on synovial inflammation and cartilage degradation.
Results: In vitro experiments showed that TNF-α was the most potent inducer of cartilage matrix-degrading enzymes, and that teriparatide antagonized the TNF-α of effect. Consistently, articular cartilage samples from TNF-α transgenic mice contained more MMP-13 positive chondrocytes than those from wild type mice. In addition, more type II collagen was cleaved in human OA cartilage than in normal cartilage samples.
Conclusions: Teriparatide can prevent synovitis and cartilage degradation by suppressing TNF-α mediated MMP-13 overexpression. Together with its chondroregenerative capability, teriparatide may be the first effective disease modifying osteoarthritis drug.